We introduce a data-driven model approximation method for nonlinear control systems, drawing on recent progress in machine learning and statistical dimensionality reduction. The method is based on embedding the nonlinear system in a high (or infinite) dimensional reproducing kernel Hilbert space (RKHS) where linear balanced truncation may be carried out implicitly. This leads to a nonlinear reduction map which can be combined with a representation of the system belonging to a RKHS to give a closed, reduced order dynamical system which captures the essential input-output characteristics of the original model. Working in RKHS provides a convenient, general functional-analytical framework for theoretical understanding. Empirical simulations illustrating the approach are also provided. 1 2 U Z −1 . We also note that the problem of finding the coordinate change Q can be seen as an optimization problem [1] of the form min Q trace[QW c Q * + Q − * W o Q −1 ]. 5
This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Many dimensionality and model reduction techniques rely on estimating dominant eigenfunctions of associated dynamical operators from data. Important examples include the Koopman operator and its generator, but also the Schrödinger operator. We propose a kernel-based method for the approximation of differential operators in reproducing kernel Hilbert spaces and show how eigenfunctions can be estimated by solving auxiliary matrix eigenvalue problems. The resulting algorithms are applied to molecular dynamics and quantum chemistry examples. Furthermore, we exploit that, under certain conditions, the Schrödinger operator can be transformed into a Kolmogorov backward operator corresponding to a drift-diffusion process and vice versa. This allows us to apply methods developed for the analysis of high-dimensional stochastic differential equations to quantum mechanical systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.