A germanium (Ge)-based substrate combined with germanium-tin (GeSn) alloy embedded in source/drain (S/D) regions has attracted significant attention because of its ability to satisfy the requirements of a high-mobility channel. Devices are shrunk in their geometries to meet the target of superior density in layout arrangement. Thus, determining the influences of devices on mobility gain is important. Accordingly, several designed factors, including gate width, S/D length, and Sn concentration of the GeSn stressor, are systematically analyzed in this study. A second-order formula composed of piezoresistance coefficients is derived and adopted to achieve a precise mobility gain estimation. A peak of the carrier mobility gain appears when a nanoscale geometry combination of 20 nm gate length and -200 nm gate width is used in the Ge channel, and 10% of the Sn mole proportion of the GeSn alloy is applied.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.