Membrane lipid modulation is one of the major strategies plants have developed for cold acclimation. In this study, a combined lipidomic and transcriptomic analysis was conducted, and the changes in glycerolipids contents and species, and transcriptional regulation of lipid metabolism in maize leaves under low temperature treatment (5°C) were investigated. The lipidomic analysis showed an increase in the phospholipid phosphatidic acid (PA) and a decrease in phosphatidylcholine (PC). And an increase in digalactosyldiacylglycerol and a decrease in monogalactosyldiacylglycerol of the galactolipid class. The results implied an enhanced turnover of PC to PA to serve as precursors for galactolipid synthesis under following low temperature treatment. The analysis of changes in abundance of various lipid molecular species suggested major alterations of different pathways of plastidic lipids synthesis in maize under cold treatment. The synchronous transcriptomic analysis revealed that genes involved in phospholipid and galactolipid synthesis pathways were significantly up-regulated, and a comprehensive gene-metabolite network was generated illustrating activated membrane lipids adjustment in maize leaves following cold treatment. This study will help to understand the regulation of glycerolipids metabolism at both biochemical and molecular biological levels in 18:3 plants and to decipher the roles played by lipid remodeling in cold response in major field crop maize.
BackgroundPlant glycerol-3-phosphate dehydrogenase (GPDH) catalyzes the reduction of dihydroxyacetone phosphate (DHAP) to produce glycerol-3-phosphate (G-3-P), and plays a key role in glycerolipid metabolism as well as stress responses.ResultsIn this study, we report the cloning, enzymatic and physiological characterization of a cytosolic NAD+-dependent GPDH from maize. The prokaryotic expression of ZmGPDH1 in E.coli showed that the enzyme encoded by ZmGPDH1 was capable of catalyzing the reduction of DHAP in the presence of NADH. The functional complementation analysis revealed that ZmGPDH1 was able to restore the production of glycerol-3-phosphate and glycerol in AtGPDHc-deficient mutants. Furthermore, overexpression of ZmGPDH1 remarkably enhanced the tolerance of Arabidopsis to salinity/osmotic stress by enhancing the glycerol production, the antioxidant enzymes activities (SOD, CAT, APX) and by maintaining the cellular redox homeostasis (NADH/NAD+, ASA/DHA, GSH/GSSG). ZmGPDH1 OE Arabidopsis plants also exhibited reduced leaf water loss and stomatal aperture under salt and osmotic stresses. Quantitative real-time RT-PCR analyses revealed that overexpression of ZmGPDH1 promoted the transcripts accumulation of genes involved in cellular redox homeostasis and ROS-scavenging system.ConclusionsTogether, these data suggested that ZmGPDH1 is involved in conferring salinity and osmotic tolerance in Arabidopsis through modulation of glycerol synthesis, stomatal closure, cellular redox and ROS homeostasis.Electronic supplementary materialThe online version of this article (10.1186/s12870-018-1597-6) contains supplementary material, which is available to authorized users.
Diacylglycerol acyltransferase (DGAT) catalyzes the only rate-limiting step in the pathway of plant oil (TAG) biosynthesis and is involved in plant development. In this study, five DGAT family members were identified from maize genome database. Phylogenetic analysis classified the ZmDGATs into type-I, II, and III clusters. Conserved functional domain analysis revealed that the proteins encoded by ZmDGAT1 contained conserved MBOAT domains, while two ZmDGAT2-encoding proteins harbored LPLAT domains. qRT-PCR analysis showed that ZmDGAT genes exhibited very high relative expression in developing seeds, especially at the early stage of seed development. Under various abiotic stress conditions, differential responses of ZmDGAT genes were observed. An overall significant induction of ZmDGAT genes under cold stress in leaves and a quick and strong response to osmotic stresses in roots were highlighted. This study provides useful information for understanding the roles of DGATs in oil accumulation and stress responses in higher plants.
Galactolipids (MGDG and DGDG) and sulfolipids (SQDG) are key components of plastidic membranes, and play important roles in plant development and photosynthesis. In this study, the whole families of MGD, DGD and SQD were identified in maize genome, and were designated as ZmMGD1-3, ZmDGD1-5 and ZmSQD1-5 respectively. Based on the phylogenetic analyses, maize and Arabidopsis MGDs, DGDs and SQDs were clearly divided into two major categories (Type A and Type B) along with their orthologous genes from other plant species. Under low-phosphorus condition, the expression of Type B MGD, DGD and SQD genes of maize and Arabidopsis were significantly elevated in both leaf and root tissues. The lipid analysis was also conducted, and an overall increase in non-phosphorus lipids (MGDG, DGDG and SQDG), and a decrease in phosphorus lipids (PC, PE and PA) were observed in maize leaves and roots under phosphate deficiency. Several maize MGD and SQD genes were found involved in various abiotic stress responses. These findings will help for better understanding the specific functions of MGDs, DGDs and SQDs in 18:3 plants and for the generation of improved crops adapted to phosphate starvation and other abiotic stresses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.