Studies of the human microbiome have revealed that even healthy individuals differ remarkably in the microbes that occupy habitats such as the gut, skin, and vagina. Much of this diversity remains unexplained, although diet, environment, host genetics, and early microbial exposure have all been implicated. Accordingly, to characterize the ecology of human-associated microbial communities, the Human Microbiome Project has analyzed the largest cohort and set of distinct, clinically relevant body habitats to date. We found the diversity and abundance of each habitat’s signature microbes to vary widely even among healthy subjects, with strong niche specialization both within and among individuals. The project encountered an estimated 81–99% of the genera, enzyme families, and community configurations occupied by the healthy Western microbiome. Metagenomic carriage of metabolic pathways was stable among individuals despite variation in community structure, and ethnic/racial background proved to be one of the strongest associations of both pathways and microbes with clinical metadata. These results thus delineate the range of structural and functional configurations normal in the microbial communities of a healthy population, enabling future characterization of the epidemiology, ecology, and translational applications of the human microbiome.
A variety of microbial communities and their genes (microbiome) exist throughout the human body, playing fundamental roles in human health and disease. The NIH funded Human Microbiome Project (HMP) Consortium has established a population-scale framework which catalyzed significant development of metagenomic protocols resulting in a broad range of quality-controlled resources and data including standardized methods for creating, processing and interpreting distinct types of high-throughput metagenomic data available to the scientific community. Here we present resources from a population of 242 healthy adults sampled at 15 to 18 body sites up to three times, which to date, have generated 5,177 microbial taxonomic profiles from 16S rRNA genes and over 3.5 Tb of metagenomic sequence. In parallel, approximately 800 human-associated reference genomes have been sequenced. Collectively, these data represent the largest resource to date describing the abundance and variety of the human microbiome, while providing a platform for current and future studies.
Metagenomic shotgun sequencing (MSS) is an important tool for characterizing viral populations. It is culture independent, requires no a priori knowledge of the viruses in the sample, and may provide useful genomic information. However, MSS can lack sensitivity and may yield insufficient data for detailed analysis. We have created a targeted sequence capture panel, ViroCap, designed to enrich nucleic acid from DNA and RNA viruses from 34 families that infect vertebrate hosts. A computational approach condensed ∼1 billion bp of viral reference sequence into <200 million bp of unique, representative sequence suitable for targeted sequence capture. We compared the effectiveness of detecting viruses in standard MSS versus MSS following targeted sequence capture. First, we analyzed two sets of samples, one derived from samples submitted to a diagnostic virology laboratory and one derived from samples collected in a study of fever in children. We detected 14 and 18 viruses in the two sets, comprising 19 genera from 10 families, with dramatic enhancement of genome representation following capture enrichment. The median fold-increases in percentage viral reads post-capture were 674 and 296. Median breadth of coverage increased from 2.1% to 83.2% post-capture in the first set and from 2.0% to 75.6% in the second set. Next, we analyzed samples containing a set of diverse anellovirus sequences and demonstrated that ViroCap could be used to detect viral sequences with up to 58% variation from the references used to select capture probes. ViroCap substantially enhances MSS for a comprehensive set of viruses and has utility for research and clinical applications.
Metagenomic shotgun sequencing (MSS) is a revolutionary approach to viral diagnostic testing that allows simultaneous detection of a broad range of viruses, detailed taxonomic assignment, and detection of mutations associated with antiviral drug resistance. To enhance sensitivity for virus detection, we previously developed ViroCap, a targeted sequence capture panel designed to enrich nucleic acid from a comprehensive set of eukaryotic viruses prior to sequencing. To demonstrate the utility of MSS with targeted sequence capture for detecting clinically important viruses and characterizing clinically important viral features, we used ViroCap to analyze clinical samples from a diagnostic virology laboratory containing a broad range of medically relevant viruses. From 26 samples, MSS with ViroCap detected all of the expected viruses and 30 additional viruses. Comparing sequencing after capture enrichment with standard MSS, we detected 13 viruses only with capture enrichment and observed a consistent increase in the number and percentage of viral sequence reads as well as the breadth and depth of coverage of the viral genomes. Compared with clinical testing, MSS enhanced taxonomic assignment for 15 viruses, and codons associated with antiviral drug resistance in influenza A virus, herpes simplex virus (HSV), human immunodeficiency virus (HIV), and hepatitis C virus (HCV) could be analyzed. Overall, in clinical samples, MSS with targeted sequence capture provides enhanced virus detection and information of clinical and epidemiologic relevance compared with clinical testing and MSS without targeted sequence capture.
Intramural pseudodiverticulosis of the esophagus is a rare benign disease of the esophageal wall, with dilation of the submucosal glands, and the predominant symptom is dysphagia. In the literature, 191 cases have been described so far. Along with a short review of the literature, the present report describes six cases of this disorder, including a patient in whom intramural pseudodiverticulosis of the esophagus was secondary to laser therapy and endoluminal afterloading of an esophageal squamous-cell carcinoma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.