Solution-based linear self-assembly of metal nanoparticles offers a powerful strategy for creating plasmonic polymers, which, so far, have been formed from spherical nanoparticles and cylindrical nanorods. Here we report linear solution-based self-assembly of metal nanocubes (NCs), examine the structural characteristics of the NC chains, and demonstrate their advanced optical characteristics. In comparison with chains of nanospheres with similar dimensions, composition, and surface chemistry, predominant face-to-face assembly of large NCs coated with short polymer ligands led to a larger volume of hot spots in the chains, a nearly uniform E-field enhancement in the gaps between colinear NCs, and a new coupling mode for NC chains due to the formation of a Fabry-Perot resonator structure formed by face-to-face bonded NCs. The NC chains exhibited stronger surface-enhanced Raman scattering in comparison with linear assemblies of nanospheres. The experimental results were in agreement with finite difference time domain simulations.
Plexitonic nanoparticles offer variable optical properties through tunable excitations, in addition to electric field enhancements that far exceed molecular resonators. This study demonstrates a way to design an ultrabright surface-enhanced Raman spectroscopy (SERS) signal while simultaneously quenching the fluorescence background through silica encapsulation of the semiconductor-metal composite nanoparticles. Using a multistep approach, a J-aggregate-forming organic dye is assembled on the surface of gold nanoparticles using a cationic linker. Excitonic resonance of the J-aggregate-metal system shows an enhanced SERS signal at an appropriate excitation wavelength. Further encapsulation of the decorated particles in silica shows a significant reduction in the fluorescence signal of the Raman spectra (5× reduction) and an increase in Raman scattering (7× enhancement) when compared to phospholipid encapsulation. This reduction in fluorescence is important for maximizing the useful SERS enhancement from the particle, which shows a signal increase on the order of 10 times greater than J-aggregated dye in solution and 24 times greater than Oxonica S421 SERS tag. The silica layer also serves to promote colloidal stability. The combination of reduced fluorescence background, enhanced SERS intensity, and temporal stability makes these particles highly distinguishable with potential to enable high-throughput applications such as SERS flow cytometry.
Nanoparticle films formed at the air-water interface readily form rigid films, where the nanoparticles irreversibly associate into floating "islands", often riddled with voids and defects, upon solvent evaporation. Improving the nanoparticle mobility in these films is key to achieving control over the nanoparticle packing parameters, which is attractive for a variety of applications. In this study, a variety of n-alkanes were mixed with tetradecanethiol-capped 2 nm gold nanoparticles and studied as Langmuir films at 18 and 32 °C. Pressure-area isotherms at 18 °C reveal a mixed liquid-expanded phase of nanoparticles and alkane at the air-water interface, but only for n-alkanes that are equal to or exceed the nanoparticle capping ligand in carbon chain length. Transmission electron microscopy images of the corresponding films suggest that the nanoparticles are mixed with a continuous hydrocarbon phase at 0 mN/m and that the hydrocarbon is squeezed out of the nanoparticle film during compression.
The illumination of aggregated metal nanospecies can create strong local electric fields to brighten Raman scattering. This study describes a procedure to self-assemble gold nanorods (NRs) through the use of porphyrin and phthalocyanine agents to create reproducibly stable and robust NR aggregates in the form of end-to-end oligomers. Narrow inter-rod gaps result, creating electric field "hot spots" between the NRs. The organic linker molecules themselves are potential Raman-based optical labels, and the result is significant numbers of Raman-active species located in the hot spots. NR polymerization was quenched by phospholipid encapsulation, which allows for control of the polydispersity of the aggregate solution, to optimize the surface-enhanced Raman scattering (SERS) enhancement and permitted the aqueous solubility of the aggregates. The increased presence of Raman-active species in the hot spots and the optimizing of solution polydispersity resulted in the observation of scattering enhancements by encapsulated porphyrins/phthalocyanines of up to 3500-fold over molecular chromophores lacking the NR oligomer host.
Background Cefazolin 3 g is recommended for obese patients weighing > 120 kg preoperatively; however, there is no available evidence to suggest 3 g for treatment dosing of cefazolin in this population. This study aims to provide the first clinical data of its kind on the efficacy and safety of high-dose cefazolin in the treatment of cellulitis in obese patients using a modified Desirability of Outcomes Ranking (DOOR) methodology. Methods This is a multi-center, retrospective cohort study including adults weighing > 120 kg at the time of admission who received ≥ 48 hours of cefazolin monotherapy for cellulitis. Patients were gathered in a 3:1 ratio between the < 3 g dosing (standard-dose; SD) and 3 g dosing (high-dose; HD) groups. Patients were excluded if they had co-infections, bacteremia, bilateral lower extremity cellulitis, or if they received > 48 hours of concomitant antibiotics. The primary endpoint of efficacy and safety as determined by modified DOOR criteria was compared between obese patients who received HD and those who received SD between 1/1/2021 and 12/31/2021. The DOOR is a patient-centered methodology that uses combined efficacy and safety endpoints to help inform better clinical decision-making. Results A total of 68 patients were included; 51 received SD and 17 received HD cefazolin. There were no differences in mean age nor baseline kidney function or severity of illness between groups. The median patient weights were 140.6 kg and 160 kg for the SD and HD groups, respectively (p = 0.07). Patients achieving clinical success (resolution of cellulitis within 10 days or clinical improvement upon discharge) was higher in the HD vs SD group (70.6% vs 41%; p=0.036) (Figure 1). Conclusion Cefazolin 3 g was associated with higher clinical success in patients > 120 kg with cellulitis. Further study is necessary to confirm these results. Disclosures Elizabeth B. Hirsch, PharmD, FCCP, FIDSA, Melinta: Advisor/Consultant|MeMed: Advisor/Consultant|Merck: Advisor/Consultant|Merck: Grant/Research Support.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.