Summary We have compared the melanogenic activities of cultured melanocytes carrying two common TYR alleles as homozygous 192S-402R wildtype, heterozygous and homozygous variant. This includes assays of TYR protein, DOPAoxidase activity, glycosylation and temperature sensitivity of protein and DOPAoxidase levels. Homozygous wildtype strains on average had higher levels of TYR protein and enzyme activity than other genotypes. Homozygous 402Q/Q melanocytes produced significantly less TYR protein, displayed altered trafficking and glycosylation, with reduced DOPAoxidase. However, near wildtype TYR activity levels could be recovered at lower growth temperature. In a sample population from Southeast Queensland these two polymorphisms were present on four TYR haplotypes, designated as WT 192S-402R, 192Y-402R, 192S-402Q with a double variant 192Y-402Q of low frequency at 1.9%. Based on cell culture findings and haplotype associations, we have used an additive model to assess the penetrance of the ten possible TYR genotypes derived from the combination of these haplotypes.
Objective The etiology of major depressive disorder (MDD) is likely to be heterogeneous, but postpartum depression (PPD) is hypothesized to represent a more homogenous subset of MDD. We use genome-wide SNP data to explore this hypothesis. Method We assembled a total cohort of 1,420 self-report cases of PPD and 9,473 controls with genome-wide genotypes from Australia, the Netherlands, Sweden and the United Kingdom. We estimated the total variance attributable to genotyped variants. We used association results from the Psychiatric Genomics Consortia (PGC) of Bipolar Disorder (BPD) and MDD to create polygenic scores in PPD and related MDD data sets to estimate the genetic overlap between the disorders. Results We estimated that the percentage of variance on the liability scale explained by common genetic variants to be 0.22 with a standard error of 0.12, p = 0.02. The R2 from a logistic regression of PPD case-control status in all four cohorts on a SNP profile score weighted by PGC-BPD association results was small (0.1%) but significant (p= 0.004) indicating a genetic overlap between BPD and PPD. The results were highly significant in the Australian and Dutch cohorts (R2 > 1.1%, p < 0.008), where the majority of cases met criteria for MDD. The genetic overlap between BPD and MDD was not significant in larger Australian and Dutch MDD case-control cohorts after excluding PPD cases (R2 =0.06%, p= 0.08), despite the larger MDD group affording more power. Conclusions Our results suggest empirical genetic evidence for a more important shared genetic etiology between BPD and PPD, than between BPD and MDD.
IntroductionTwo major gout-causing genes have been identified, the urate transport genes SLC2A9 and ABCG2. Variation within the SLC17A1 locus, which encodes sodium-dependent phosphate transporter 1, a renal transporter of uric acid, has also been associated with serum urate concentration. However, evidence for association with gout is equivocal. We investigated the association of the SLC17A1 locus with gout in New Zealand sample sets.MethodsFive variants (rs1165196, rs1183201, rs9358890, rs3799344, rs12664474) were genotyped across a New Zealand sample set totaling 971 cases and 1,742 controls. Cases were ascertained according to American Rheumatism Association criteria. Two population groups were studied: Caucasian and Polynesian.ResultsAt rs1183201 (SLC17A1), evidence for association with gout was observed in both the Caucasian (odds ratio (OR) = 0.67, P = 3.0 × 10-6) and Polynesian (OR = 0.74, P = 3.0 × 10-3) groups. Meta-analysis confirmed association of rs1183201 with gout at a genome-wide level of significance (OR = 0.70, P = 3.0 × 10-8). Haplotype analysis suggested the presence of a common protective haplotype.ConclusionWe confirm the SLC17A1 locus as the third associated with gout at a genome-wide level of significance.
There is increasing epidemiologic and molecular evidence that cutaneous melanomas arise through multiple causal pathways. To further define the pathways to melanoma, we explored the relationship between germline and somatic mutations in a series of melanomas collected from 134 Spanish and 241 Austrian patients. Tumor samples were analyzed for melanocortin-1 receptor (MC1R) variants and mutations in the BRAF and NRAS genes. Detailed clinical data were systematically collected from patients. We found that NRAS-mutant melanomas were significantly more likely from older patients and BRAF-mutant melanomas were more frequent in melanomas from the trunk. We observed a nonsignificant association between germline MC1R status and somatic BRAF mutations in melanomas from trunk sites (odds ratio (OR) 1.8 (0.8-4.1), P=0.1), whereas we observed a significant inverse association between MC1R and BRAF for melanomas of the head and neck (OR 0.3 (0.1-0.8), P=0.02). This trend was observed in both the Spanish and Austrian populations.
The main genetic determinant of soluble IL-6R levels is the missense variant rs2228145, which maps to the cleavage site of IL-6R. For each Ala allele, sIL-6R serum levels increase by ~20 ng/ml and asthma risk by 1.09-fold. However, this variant does not explain the total heritability for sIL-6R levels. Additional independent variants in IL6R may therefore contribute to variation in sIL-6R levels and influence asthma risk. We imputed 471 variants in IL6R and tested these for association with sIL-6R serum levels in 360 individuals. An intronic variant (rs12083537) was associated with sIL-6R levels independently of rs4129267 (P = 0.0005), a proxy SNP for rs2228145. A significant and consistent association for rs12083537 was observed in a replication panel of 354 individuals (P = 0.033). Each rs12083537:A allele increased sIL-6R serum levels by 2.4 ng/ml Analysis of mRNA levels in two cohorts did not identify significant associations between rs12083537 and IL6R transcription levels. On the other hand, results from 16 705 asthmatics and 30 809 controls showed that the rs12083537:A allele increased asthma risk by 1.04-fold (P = 0.0419). Genetic risk scores based on IL6R regulatory variants may prove useful in explaining variation in clinical response to tocilizumab, an anti-IL-6R monoclonal antibody.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.