Summary• An association genetics approach was used to examine individual genes and alleles at the loci responsible for complex traits controlling lignocellulosic biosynthesis in black cottonwood (Populus trichocarpa). Recent interest in poplars as a source of renewable energy, combined with the vast genomic resources available, has enabled further examination of their genetic diversity.• Forty candidate genes were resequenced in a panel of 15 unrelated individuals to identify single nucleotide polymorphisms (SNPs). Eight hundred and seventy-six SNPs were successfully genotyped in a clonally replicated population (448 clones). The association population (average of 2.4 ramets per clone) was phenotyped using pyrolysis molecular beam mass spectrometry. Both single-marker and haplotype-based association tests were implemented to identify associations for composite traits representing lignin content, syringyl : guaiacyl ratio and C6 sugars.• Twenty-seven highly significant, unique, single-marker associations (false discovery rate Q < 0.10) were identified across 40 candidate genes in three composite traits. Twenty-three significant haplotypes within 11 genes were discovered in two composite traits.• Given the rapid decay of within-gene linkage disequilibrium and the high coverage of amplicons across each gene, it is likely that the numerous polymorphisms identified are in close proximity to the causative SNPs and the haplotype associations reflect information present in the associations between markers.
All species of the genus Populus (poplar, aspen) are dioecious, suggesting an ancient origin of this trait. Despite some empirical counter examples, theory suggests that nonrecombining sex-linked regions should quickly spread, eventually becoming heteromorphic chromosomes. In contrast, we show using whole-genome scans that the sex-associated region in Populus trichocarpa is small and much younger than the age of the genus. This indicates that sex determination is highly labile in poplar, consistent with recent evidence of 'turnover' of sex-determination regions in animals. We performed whole-genome resequencing of 52 P. trichocarpa (black cottonwood) and 34 Populus balsamifera (balsam poplar) individuals of known sex. Genomewide association studies in these unstructured populations identified 650 SNPs significantly associated with sex. We estimate the size of the sex-linked region to be ~100 kbp. All SNPs significantly associated with sex were in strong linkage disequilibrium despite the fact that they were mapped to six different chromosomes (plus 3 unmapped scaffolds) in version 2.2 of the reference genome. We show that this is likely due to genome misassembly. The segregation pattern of sex-associated SNPs revealed this to be an XY sex-determining system. Estimated divergence times of X and Y haplotype sequences (6-7 Ma) are much more recent than the divergence of P. trichocarpa (poplar) and Populus tremuloides (aspen). Consistent with this, in P. tremuloides, we found no XY haplotype divergence within the P. trichocarpa sex-determining region. These two species therefore have a different genomic architecture of sex, suggestive of at least one turnover event in the recent past.
Genetic improvement through breeding is one of the key approaches to increasing biomass supply. This paper documents the breeding progress to date for four perennial biomass crops (PBCs) that have high output–input energy ratios: namely Panicum virgatum (switchgrass), species of the genera Miscanthus (miscanthus), Salix (willow) and Populus (poplar). For each crop, we report on the size of germplasm collections, the efforts to date to phenotype and genotype, the diversity available for breeding and on the scale of breeding work as indicated by number of attempted crosses. We also report on the development of faster and more precise breeding using molecular breeding techniques. Poplar is the model tree for genetic studies and is furthest ahead in terms of biological knowledge and genetic resources. Linkage maps, transgenesis and genome editing methods are now being used in commercially focused poplar breeding. These are in development in switchgrass, miscanthus and willow generating large genetic and phenotypic data sets requiring concomitant efforts in informatics to create summaries that can be accessed and used by practical breeders. Cultivars of switchgrass and miscanthus can be seed‐based synthetic populations, semihybrids or clones. Willow and poplar cultivars are commercially deployed as clones. At local and regional level, the most advanced cultivars in each crop are at technology readiness levels which could be scaled to planting rates of thousands of hectares per year in about 5 years with existing commercial developers. Investment in further development of better cultivars is subject to current market failure and the long breeding cycles. We conclude that sustained public investment in breeding plays a key role in delivering future mass‐scale deployment of PBCs.
All species of the genus Populus (poplar, aspen) are dioecious, suggesting an ancient origin of this trait. Theory suggests that non-recombining sex-linked regions should quickly spread, eventually becoming heteromorphic chromosomes. In contrast, we show using whole genome scans that the sex-associated region in P. trichocarpa is small and much younger than the age of the genus. This indicates that sex-determination is highly labile in poplar, consistent with recent evidence of “turnover” of sex determination regions in animals. We performed whole genome resequencing of 52 Populus trichocarpa (black cottonwood) and 34 P. balsamifera (balsam poplar) individuals of known sex. Genome-wide association studies (GWAS) in these unstructured populations identified 650 SNPs significantly associated with sex. We estimate the size of the sex-linked region to be ~100 Kbp. All significant SNPs were in strong linkage disequilibrium despite the fact that they were mapped to six different chromosomes (plus 3 unmapped scaffolds) in version 2.2 of the reference genome. We show that this is likely due to genome misassembly. The segregation pattern of sex associated SNPs revealed this to be an XY sex determining system. Estimated divergence times of X and Y haplotype sequences (6-7 MYA) are much more recent than the divergence of P. trichocarpa (poplar) and P. tremuloides (aspen). Consistent with this, in P. tremuloides we found no XY haplotype divergence within the P. trichocarpa sex-determining region. These two species therefore have a different genomic architecture of sex, suggestive of at least one turnover event in the recent past.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.