Time-reversal (T/R) communications is a new application area motivated by the recent advances in T/R theory. Although perceived by many in signal processing as simply an application of matched-filter theory, a T/R receiver offers an interesting solution to the communications problem for a reverberant channel. In this paper, the performance of various realizations of the T/R receiver for an acoustic communications experiment in air is described along with its associated processing. The experiment is developed to evaluate the performance of point-to-point T/R receivers designed to extract a transmitted information sequence propagating in a highly reverberant environment. It is demonstrated that T/R receivers are capable of extracting the transmitted coded sequence from noisy microphone sensor measurements with zero-symbol error. The processing required to validate these experimental results is discussed. These results are also compared with those produced by an equivalent linear equalizer or inverse filter, which provides the optimal solution when it incorporates all of the reverberations.
An x-ray streak camera platform has been characterized and implemented for use at the National Ignition Facility. The camera has been modified to meet the experiment requirements of the National Ignition Campaign and to perform reliably in conditions that produce high electromagnetic interference. A train of temporal ultra-violet timing markers has been added to the diagnostic in order to calibrate the temporal axis of the instrument and the detector efficiency of the streak camera was improved by using a CsI photocathode. The performance of the streak camera has been characterized and is summarized in this paper. The detector efficiency and cathode measurements are also presented.
The development of multichannel time-reversal ͑T/R͒ processing techniques continues to progress rapidly especially when the need to communicate in a reverberant environment is critical. The underlying T/R concept is based on time-reversing the Green's function characterizing the uncertain communications channel mitigating the deleterious dispersion and multipath effects. In this paper, attention is focused on two major objectives: ͑1͒ wideband communications leading to a time-reference modulation technique; and ͑2͒ multichannel acoustic communications in two waveguides: a stairwell and building corridors with many obstructions, multipath returns, severe background noise, disturbances, and long propagation paths ͑ϳ180 ft͒ including disruptions ͑bends͒. It is shown that T/R receivers are easily extended to wideband designs. Acoustic information signals are transmitted with an eight-element array to two receivers with a significant loss in signal levels due to the propagation environment. The results of the new wideband T/R processor and modulation scheme demonstrate that the overall performance for both high ͑24-bit͒ and low ͑1-bit͒ bit level analog-to-digital converter designs. These results are validated by performing proof-of-principle acoustic communications experiments in air. It is shown that the resulting T/R receivers are capable of extracting the transmitted coded sequence from noisy microphone array measurements with zero-bit error.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.