We used a recently developed protocol of transcranial magnetic stimulation (TMS), theta-burst stimulation, to bilaterally depress activity in the dorsolateral prefrontal cortex as subjects performed a visual discrimination task. We found that TMS impaired subjects' ability to discriminate between correct and incorrect stimulus judgments. Specifically, after TMS subjects reported lower visibility levels for correctly identified stimuli, as if they were less fully aware of the quality of their visual information processing. A signal detection theory analysis confirmed that the results reflect a change in metacognitive sensitivity, not just response bias. The effect was specific to metacognition; TMS did not change stimulus discrimination performance, ruling out alternative explanations such as TMS impairing visual attention. Together these results suggest that activations in the prefrontal cortex in brain imaging experiments on visual awareness are not epiphenomena, but rather may reflect a critical metacognitive process.
A recent study found that, across individuals, gray matter volume in the frontal polar region was correlated with visual metacognition capacity (i.e., how well one’s confidence ratings distinguish between correct and incorrect judgments). A question arises as to whether the putative metacognitive mechanisms in this region are also used in other metacognitive tasks involving, for example, memory. A novel psychophysical measure allowed us to assess metacognitive efficiency separately in a visual and a memory task, while taking variations in basic task performance capacity into account. We found that, across individuals, metacognitive efficiencies positively correlated between the two tasks. However, voxel-based morphometry analysis revealed distinct brain structures for the two kinds of metacognition. Replicating a previous finding, variation in visual metacognitive efficiency was correlated with volume of frontal polar regions. However, variation in memory metacognitive efficiency was correlated with volume of the precuneus. There was also a weak correlation between visual metacognitive efficiency and precuneus volume, which may account for the behavioral correlation between visual and memory metacognition (i.e., the precuneus may contain common mechanisms for both types of metacognition). However, we also found that gray matter volumes of the frontal polar and precuneus regions themselves correlated across individuals, and a formal model comparison analysis suggested that this structural covariation was sufficient to account for the behavioral correlation of metacognition in the two tasks. These results highlight the importance of the precuneus in higher-order memory processing and suggest that there may be functionally distinct metacognitive systems in the human brain.
Although attention usually enhances perceptual sensitivity, we found that it can also lead to relatively conservative detection biases and lower visibility ratings in discrimination tasks. These results are explained by a model in which attention reduces the trial-by-trial variability of the perceptual signal, and we determined how this model led to the observed behavior. These findings may partially reflect our impression of 'seeing' the whole visual scene despite our limited processing capacity outside of the focus of attention.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.