Protection from hardware attacks such as snoopers and mod chips has been receiving increasing attention in computer architecture. This paper presents a new combined memory encryption/authentication scheme. Our new split counters for counter-mode encryption simultaneously eliminate counter overflow problems and reduce per-block counter size, and we also dramatically improve authentication performance and security by using the Galois/Counter Mode of operation (GCM), which leverages counter-mode encryption to reduce authentication latency and overlap it with memory accesses. Our results indicate that the split-counter scheme has a negligible overhead even with a small (32KB) counter cache and using only eight counter bits per data block. The combined encryption/authentication scheme has an IPC overhead of 5% on average across SPEC CPU 2000 benchmarks, which is a significant improvement over the 20% overhead of existing encryption/authentication schemes.
Data security in computer systems has recently become an increasing concern, and hardware-based attacks have emerged. As a result, researchers have investigated hardware encryption and authentication mechanisms as a means of addressing this security concern. Unfortunately, no such techniques have been investigated for Distributed Shared Memory (DSM) multiprocessors, and previously proposed techniques for uni-processor and Symmetric Multiprocessor (SMP) systems cannot be directly used for DSMs. This work is the first to examine the issues involved in protecting secrecy and integrity of data in DSM systems. We first derive security requirements for processor-processor communication in DSMs, and find that different types of coherence messages need different protection. Then we propose and evaluate techniques to provide efficient encryption and authentication of the data in DSM systems. Our simulation results using SPLASH-2 benchmarks show that the execution time overhead for our three proposed approaches is small and ranges from 6% to 8% on a 16-processor DSM system, relative to a similar DSM without support for data secrecy and integrity.
In today's digital world, computer security issues have become increasingly important. In particular, researchers have proposed designs for secure processors that utilize hardware-based memory encryption and integrity verification to protect the privacy and integrity of computation even from sophisticated physical attacks. However, currently proposed schemes remain hampered by problems that make them impractical for use in today's computer systems: lack of virtual memory and Inter-Process Communication support as well as excessive storage and performance overheads. In this article, we propose (1) address independent seed encryption (AISE), a counter-mode-based memory encryption scheme using a novel seed composition, and (2) bonsai Merkle trees (BMT), a novel Merkle tree-based memory integrity verification technique, to eliminate these system and performance issues associated with prior counter-mode memory encryption and Merkle tree integrity verification schemes. We present both a qualitative discussion and a quantitative analysis to illustrate the advantages of our techniques over previously proposed approaches in terms of complexity, feasibility, performance, and storage. Our results show that AISE+BMT reduces the overhead of prior memory encryption and integrity verification schemes from 12% to 2% on average for single-threaded benchmarks on uniprocessor systems, and from 15% to 4% for coscheduled benchmarks on multicore systems while eliminating critical system-level problems.
Protection from hardware attacks such as snoopers and mod chips has been receiving increasing attention in computer architecture. This paper presents a new combined memory encryption/authentication scheme. Our new split counters for counter-mode encryption simultaneously eliminate counter overflow problems and reduce per-block counter size, and we also dramatically improve authentication performance and security by using the Galois/Counter Mode of operation (GCM), which leverages counter-mode encryption to reduce authentication latency and overlap it with memory accesses.Our results indicate that the split-counter scheme has a negligible overhead even with a small (32KB) counter cache and using only eight counter bits per data block. The combined encryption/authentication scheme has an IPC overhead of 5% on average across SPEC CPU 2000 benchmarks, which is a significant improvement over the 20% overhead of existing encryption/authentication schemes.
Multiprocessor computer systems are currently widely used in commercial settings to run critical applications. These applications often operate on sensitive data such as customer records, credit card numbers, and financial data. As a result, these systems are the frequent targets of attacks because of the potentially significant gain an attacker could obtain from stealing or tampering with such data. This provides strong motivation to protect the confidentiality and integrity of data in commercial multiprocessor systems through architectural support. Architectural support is able to protect against software-based attacks, and is necessary to protect against hardware-based attacks. In this work, we propose architectural mechanisms to ensure data confidentiality and integrity in Distributed Shared Memory multiprocessors which utilize a point-topoint based interconnection network. Our approach improves upon previous work in this area, mainly in the fact that our approach reduces performance overheads by significantly reducing the amount of cryptographic operations required. Evaluation results show that our approach can protect data confidentiality and integrity in a 16-processor DSM system with an average overhead of 1.6% and a maximum of only 7% across all SPLASH-2 applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.