Protection from hardware attacks such as snoopers and mod chips has been receiving increasing attention in computer architecture. This paper presents a new combined memory encryption/authentication scheme. Our new split counters for counter-mode encryption simultaneously eliminate counter overflow problems and reduce per-block counter size, and we also dramatically improve authentication performance and security by using the Galois/Counter Mode of operation (GCM), which leverages counter-mode encryption to reduce authentication latency and overlap it with memory accesses. Our results indicate that the split-counter scheme has a negligible overhead even with a small (32KB) counter cache and using only eight counter bits per data block. The combined encryption/authentication scheme has an IPC overhead of 5% on average across SPEC CPU 2000 benchmarks, which is a significant improvement over the 20% overhead of existing encryption/authentication schemes.
Protection from hardware attacks such as snoopers and mod chips has been receiving increasing attention in computer architecture. This paper presents a new combined memory encryption/authentication scheme. Our new split counters for counter-mode encryption simultaneously eliminate counter overflow problems and reduce per-block counter size, and we also dramatically improve authentication performance and security by using the Galois/Counter Mode of operation (GCM), which leverages counter-mode encryption to reduce authentication latency and overlap it with memory accesses.Our results indicate that the split-counter scheme has a negligible overhead even with a small (32KB) counter cache and using only eight counter bits per data block. The combined encryption/authentication scheme has an IPC overhead of 5% on average across SPEC CPU 2000 benchmarks, which is a significant improvement over the 20% overhead of existing encryption/authentication schemes.
Multiprocessor computer systems are currently widely used in commercial settings to run critical applications. These applications often operate on sensitive data such as customer records, credit card numbers, and financial data. As a result, these systems are the frequent targets of attacks because of the potentially significant gain an attacker could obtain from stealing or tampering with such data. This provides strong motivation to protect the confidentiality and integrity of data in commercial multiprocessor systems through architectural support. Architectural support is able to protect against software-based attacks, and is necessary to protect against hardware-based attacks. In this work, we propose architectural mechanisms to ensure data confidentiality and integrity in Distributed Shared Memory multiprocessors which utilize a point-topoint based interconnection network. Our approach improves upon previous work in this area, mainly in the fact that our approach reduces performance overheads by significantly reducing the amount of cryptographic operations required. Evaluation results show that our approach can protect data confidentiality and integrity in a 16-processor DSM system with an average overhead of 1.6% and a maximum of only 7% across all SPLASH-2 applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.