The final effluents of three (Alice, Dimbaza, and East London) wastewater treatment plants (WWTPs) were evaluated to determine their physicochemical quality and prevalence of multiple antibiotics resistant (MAR) Pseudomonas species, between August 2007 and July 2008. The annual mean total Pseudomonas count (TPC) was 1.20 × 104 (cfu/100 mL), 1.08 × 104 (cfu/100 mL), and 2.66 × 104 (cfu/100 mL), for the Alice, Dimbaza, and East London WWTPs respectively. The effluents were generally compliant with recommended limits for pH, temperature, TDS, DO, nitrite and nitrate; but fell short of target standards for turbidity, COD, and phosphate. The tested isolates were highly sensitive to gentamicin (100%), ofloxacin (100%), clindamycin (90%), erythromycin (90%) and nitrofurantoin (80%); whereas high resistance was observed against the penicillins (90–100%), rifampin (90%), sulphamethoxazole (90%) and the cephems (70%). MAR index ranged between 0.26 and 0.58. The study demonstrated that MAR Pseudomonas species were quite prevalent in the final effluents of WWTPs in South Africa; and this can lead to serious health risk for communities that depend on the effluent-receiving waters for sundry purposes.
The study investigated the occurrence of antimicrobial resistance genes and virulence determinants in Vibrio species recovered from different freshwater sheds in rustic milieu. A total of 118 Vibrio isolates comprising Vibrio fluvialis (n=41), Vibrio mimicus (n=40) and V. vulnificus (n=37) was identified by amplification of ToxR, vmh and hsp60 genes. The amplification of virulence genes indicated that V. mimicus (toxR, zot, ctx, VPI, and ompU) genes were detected in 12.5%, 32.5%, 45%, 37.5% and 10% respectively. V. fluvialis genes (stn, hupO and vfh) were harboured in 48.8%, 14.6% and 19.5% isolates congruently. The other virulence genes that include vcgC and vcgE were observed in 63.1% and 29% of isolates belonging to V. vulnificus. With the exceptions of imipenem, meropenem and ciprofloxacin, most isolates exhibited more than 50% resistance to antibiotics. The antimicrobial resistance was more prevalent for polymyxin B (100%), azithromycin (100%) and least in ciprofloxacin (16.1%). Multiple antibiotic resistance index range was 0.3 and 0.8 with most isolates showing MARI of 0.8. The blaTEM, AmpC, blaGES, blaIMP, blaOXA-48 and blaKPC genes were detected in 53.3%, 42%, 29.6%, 16.6%, 15%, 11.3% and 5.6% of the isolates. Non-beta lactamases such as streptomycin resistance (aadA and strA), gentamicin resistance (aphA1) and quinolone resistance gene (qnrVC) were found in 5.2%, 44.3%, 26% and 2.8%. Chloramphenicol resistance genes (cmlA1 and catII) were found in 5.2% and 44.3% among the isolates. Our findings reveal the presence of antimicrobial resistance genes and virulent Vibrio species in aquatic environment which can have potential risk to human and animal’s health.
Distribution, investigation, surveillance and control (DISC) of cholera outbreaks in endemic/non-endemic regions has been a concerted approach towards the management of the causal pathogen. Relevant organization, government, health systems and the public have implemented several steps towards controlling the menace, yet pathogen continues to occur with diverse phenotypes/genotypes of high clinical and epidemiological relevance. The study determines antibiotic susceptibility/resistance pattern of Vibrio cholerae isolates retrieved from six domestic water sources between March and August 2018. Serological and molecular typing methods (polymerase chain reaction or PCR) were used to confirm the isolates identity. Antibiotic susceptibility testing was conducted using six commonly employed antibiotics of V. cholerae according to the recommendation of Clinical Laboratory Standard and European Committee for Antimicrobial Susceptibility Testing with other relevant antibiotics of investigative epidemiology and infection control, employing both disc diffusion test and PCR gene detection. Samples presumptive counts ranged between 1.10 to 7.91 log10 CFU/mL. Amongst the 759 presumptive isolates retrieved, sixty-one were confirmed as V. cholerae which were further serogrouped as Non-O1/Non-O139 V. cholerae. Various V. cholerae resistant phenotypes/genoytypes were detected vis: carbapenemase (CR-Vc; 31.1%/5.3%). New Delhi Metallobetalactamase (NDM-1-Vc; 23.0%/42.5%), extended spectrum betalactamase (ESBL-Vc; 42.6%/blaTEM:86,7%), chloramphenicol resistance (62.3%/Flor: 46.2%}, tetracycline resistance (70.5%/46.7%), AmpC resistance (21.0 (34.4%/56.7%)) and various other resistant genotypes/phenotypes. It was observed that more than 50% of the confirmed V. cholerae isolates possess resistance to two or more antibiotic classes/groups with multiple antibiotic resistance index (MARI) ranging from 0.031 to 0.5. This observation provides necessary information and updates for surveillance, planning and implementation of control strategies for cholera. It would also encourage decision making, formulation of policy by the government and cholera control authorities.
The antimicrobial activities of aqueous (cold and hot) and ethanolic extracts of leaf stem bark and root of Cyathula prostrata were investigated against some human clinical isolates of Staphylococcus aureus, Streptococcus mutans, Escherichia coli, Bacillus cereus, Pseudomonas aeruginosa, Klebsiella pneumoniae, Proteus mirabilis, Salmonella typhi, and Candida albicans using the Agar well diffusion method at extract concentration of 25mg/ml. Ciprofloxacin(5μg/ml) and Fluconazole (20μg/ml) drugs was used as positive reference standards to determine the sensitivity of the strains. Results obtained showed that all the test isolates were inhibited by various fractions of the leaf, root and stem bark extracts. The antimicrobial activities of the different plant parts were not significantly different (P<0.05), though the greatest activities were observed with the ethanolic fractions (14.0-25.5 mm), followed by the hot water (12.0-24.2 mm) and cold extracts (13.0-18.5 mm). An inhibition range of 24.0-25.5mm and 28.5mm were observed from ciprofloxacin and fluconazole drugs respectively. The percentage susceptibility of the most sensitive bacterial isolate (E. coli,) was 95.9% while the least (K. pneumoniae) had 40.0% sensitivity. Candida albicans had a percentage susceptibility of 57.5%. The minimum inhibitory concentration (MIC) ranged between 400 and 800μg/ml. The observed phytochemical compounds were saponins, tannins, flavonoids, alkaloids, cardiac glycosides and steroids. This study has justified the applications of Cyathula prostrata in the traditional herbal medicines and therefore holds a promise as a potential source of novel broad spectrum drug for treating infectious diseases. [J Intercult Ethnopharmacol 2012; 1(1.000): 35-43
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.