The study investigated the occurrence of antimicrobial resistance genes and virulence determinants in Vibrio species recovered from different freshwater sheds in rustic milieu. A total of 118 Vibrio isolates comprising Vibrio fluvialis (n=41), Vibrio mimicus (n=40) and V. vulnificus (n=37) was identified by amplification of ToxR, vmh and hsp60 genes. The amplification of virulence genes indicated that V. mimicus (toxR, zot, ctx, VPI, and ompU) genes were detected in 12.5%, 32.5%, 45%, 37.5% and 10% respectively. V. fluvialis genes (stn, hupO and vfh) were harboured in 48.8%, 14.6% and 19.5% isolates congruently. The other virulence genes that include vcgC and vcgE were observed in 63.1% and 29% of isolates belonging to V. vulnificus. With the exceptions of imipenem, meropenem and ciprofloxacin, most isolates exhibited more than 50% resistance to antibiotics. The antimicrobial resistance was more prevalent for polymyxin B (100%), azithromycin (100%) and least in ciprofloxacin (16.1%). Multiple antibiotic resistance index range was 0.3 and 0.8 with most isolates showing MARI of 0.8. The blaTEM, AmpC, blaGES, blaIMP, blaOXA-48 and blaKPC genes were detected in 53.3%, 42%, 29.6%, 16.6%, 15%, 11.3% and 5.6% of the isolates. Non-beta lactamases such as streptomycin resistance (aadA and strA), gentamicin resistance (aphA1) and quinolone resistance gene (qnrVC) were found in 5.2%, 44.3%, 26% and 2.8%. Chloramphenicol resistance genes (cmlA1 and catII) were found in 5.2% and 44.3% among the isolates. Our findings reveal the presence of antimicrobial resistance genes and virulent Vibrio species in aquatic environment which can have potential risk to human and animal’s health.
Hospital wastewater (HWW) harbours diverse microbial species and a miscellany of genome that would facilitate the emergence of novel pathogen upon genome integration that manifests novel traits in infectious pathogens. The study aimed to determine the antibiogram, and virulence signatures of Pseudomonas aeruginosa (P. aeruginosa) recovered from selected agrestic hospital effluents in Eastern Cape, South Africa. Thirty-six (36) wastewater samples were collected from selected hospital drains between February 2018 and April 2018, processed and analyzed by culture-dependent methods for the isolation of P. aeruginosa. The identity confirmation of isolates was achieved by amplification of oprl and oprL genes. Antibiogram was done using standard disk diffusion technique of Kirby–Bauer as approved by CLSI 2018 guidelines. Virulence signatures (lasA, lasB, toxA, popB) among isolates were analysed using polymerase chain reaction. A total of 54 P. aeruginosa isolates were confirmed by amplification of oprl and oprL genes in the hospital wastewater effluent samples. The isolates showed a 100% susceptibility to gentamicin, amikacin and imipenem antimicrobial agents. Ceftazidime recorded the most resistance (63%) against the isolates studied. Other antibiotics had a resistance range of 7% and 35%. The MAR index among the isolates revealed a range of 0.23 and 0.38. ToxA virulence gene was detected in all isolates while popB, lasB, lasA were detected in 82%, 75% and 54% of the isolates. This study reveals P. aeruginosa isolates with virulence traits and some strains showing multiple antibiotic resistance. The multiple antibiotic resistance index (MARI) of ≥ 0.2 indicates that the some isolates may have emerged from high-risk sources, thus projecting a risk to public health. However, with the high sensitivity pattern observed among the studied isolates, most of the antibiotics used in the susceptibility tests are not at peril. Hence, the use of these antibiotics is encouraged for treatment of infection attributed to P. aeruginosa. It is also pertinent to initiate strict control and rigid antibiotics therapeutic policy with surveillance programmes for multidrug-resistant pathogens to forestall the development and transmission of resistance traits in the pathogens.
Drug resistance has been recognized in all available therapeutic class of medications for the management of human immunodeficiency virus‐1 (HIV‐1) infected patients. This makes the continuous study of HIV drug resistance and new treatment options pertinent to patients and researchers globally. The aim of this study is to analyze the complete HIV‐1 integrase gene for the possible occurrence of resistance mutations or polymorphisms. We performed genetic analyses on 48 treatment‐naive HIV‐1‐infected patients using nested polymerase chain reaction. Integrase drug‐related resistance mutation (DRMs) analysis was performed on all generated sequences according to Stanford HIV drug interpretation program and the International AIDS Society‐USA guidelines while phylogenetic analysis was inferred using MEGA 6. The study revealed no major resistance‐associated mutation. However, E157Q (2.1%), L74M/I (4.2%), and P142T (2.1%) were the observed accessory and polymorphic mutations. Naturally occurring polymorphism observed were E11D, K14R, D25E, V31I, M50I, V72I, P90T, F100Y, L101I, T124A, T125A, K136Q, D167E, V201I, L234I, A265V, A269K, D278A, and S283G. Phylogenetic analysis delineated all the sequences as HIV‐1 subtype C. The study revealed the absence of major integrase inhibitors associated resistance mutations in a setting where integrase inhibitor is administered as salvage therapy in patients developing resistance to first and second‐line antiretroviral treatment. However minor and natural polymorphisms were observed and thus may influence the outcome of each treatment regimen. However, additional studies are required to precisely evaluate the impact of these mutations on integrase inhibitors in the Eastern Cape of South Africa.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.