ABSTRACT. Estimates of glacier mass balance using geodetic methods can differ significantly from estimates using direct glaciological field-based measurements. To determine if such differences are real or methodological, there is a need to improve uncertainty estimates in both methods. In this paper, we focus on the uncertainty of geodetic methods and describe a geostatistical technique that takes into account the spatial correlation of the elevation differences when calculating spatially averaged elevation changes. We apply this method to the western Svartisen ice cap, Norway, using elevation differences from the surrounding bedrock derived from stereophotogrammetry. We show that the uncertainty is not only dependent on the standard error of the individual elevation differences but is also dependent on the size of the averaging area and the scale of the spatial correlation. To assess if the geostatistical analysis made over bedrock is applicable to glacier surfaces, we use concurrent photogrammetrical and laser scanning data from bedrock and a range of glacier surfaces to evaluate the dependency of the geostatistical analysis on the surface type. The estimated geodetic mass balance, and its uncertainty, is -2.6 AE 0.9 m w.e. for the period 1968-85, and -2.0 AE 2.2 m w.e. for 1985-2002.
A one-dimensional second-order closure model and in situ observations on a melting glacier surface are used to investigate the suitability of bulk and profile methods for determining turbulent fluxes in the presence of the katabatic wind-speed maximum associated with glacier winds. The results show that profile methods severely underestimate turbulent fluxes when a wind-speed maximum is present. The bulk method, on the other hand, only slightly overestimates the turbulent heat flux in the entire region below the wind-speed maximum and is thus much more appropriate for use on sloping glacier surfaces where katabatic winds dominate and wind-speed maxima are just a few meters above the surface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.