Abstract. Simulation results of global aerosol models have been assembled in the framework of the AeroCom intercomparison exercise. In this paper, we analyze the life cycles of dust, sea salt, sulfate, black carbon and particulate organic matter as simulated by sixteen global aerosol models. The differences among the results (model diversities) for sources and sinks, burdens, particle sizes, water uptakes, and spatial dispersals have been established. These diversities have large consequences for the calculated radiative forcing and the aerosol concentrations at the surface. Processes and parameters are identified which deserve further research.The AeroCom all-models-average emissions are dominated by the mass of sea salt (SS), followed by dust (DU), sulfate (SO 4 ), particulate organic matter (POM), and finally black carbon (BC). Interactive parameterizations of the emissions and contrasting particles sizes of SS and DU lead genCorrespondence to: C. Textor (christiane.textor@cea.fr) erally to higher diversities of these species, and for total aerosol. The lower diversity of the emissions of the fine aerosols, BC, POM, and SO 4 , is due to the use of similar emission inventories, and does therefore not necessarily indicate a better understanding of their sources. The diversity of SO 4 -sources is mainly caused by the disagreement on depositional loss of precursor gases and on chemical production. The diversities of the emissions are passed on to the burdens, but the latter are also strongly affected by the model-specific treatments of transport and aerosol processes. The burdens of dry masses decrease from largest to smallest: DU, SS, SO 4 , POM, and BC.The all-models-average residence time is shortest for SS with about half a day, followed by SO 4 and DU with four days, and POM and BC with six and seven days, respectively. The wet deposition rate is controlled by the solubility and increases from DU, BC, POM to SO 4 and SS. It is the dominant sink for SO 4 , BC, and POM, and contributes about one third to the total removal of SS and DU species. For SS Published by Copernicus GmbH on behalf of the European Geosciences Union. C. Textor et al.: Diversities of aerosol life cycles within AeroComand DU we find high diversities for the removal rate coefficients and deposition pathways. Models do neither agree on the split between wet and dry deposition, nor on that between sedimentation and other dry deposition processes. We diagnose an extremely high diversity for the uptake of ambient water vapor that influences the particle size and thus the sink rate coefficients. Furthermore, we find little agreement among the model results for the partitioning of wet removal into scavenging by convective and stratiform rain.Large differences exist for aerosol dispersal both in the vertical and in the horizontal direction. In some models, a minimum of total aerosol concentration is simulated at the surface. Aerosol dispersal is most pronounced for SO 4 and BC and lowest for SS. Diversities are higher for meridional than for verti...
Emission generated by the international merchant fleet has been suggested to represent a significant contribution to the global anthropogenic emissions. To analyze the impacts of these emissions, we present detailed model studies of the changes in atmospheric composition of pollutants and greenhouse compounds due to emissions from cargo and passenger ships in international trade. Global emission inventories of NOx, SO2, CO, CO2, and volatile organic compounds (VOC) are developed by a bottom‐up approach combining ship‐type specific engine emission modeling, oil cargo VOC vapor modeling, alternative global distribution methods, and ship operation data. Calculated bunker fuel consumption is found in agreement with international sales statistics. The Automated Mutual‐assistance Vessel Rescue system (AMVER) data set is found to best reflect the distributions of cargo ships in international trade. A method based on the relative reporting frequency weighted by the ship size for each vessel type is recommended. We have exploited this modeled ship emissions inventory to estimate perturbations of the global distribution of ozone, methane, sulfate, and nitrogen compounds using a global 3‐D chemical transport model with interactive ozone and sulfate chemistry. Ozone perturbations are highly nonlinear, being most efficient in regions of low background pollution. Different data sets (e.g., AMVER, The Comprehensive Ocean‐Atmosphere Data Set (COADS)) lead to highly different regional perturbations. A maximum ozone perturbation of approximately 12 ppbv is obtained in the North Atlantic and in the North Pacific during summer months. Global average sulfate loading increases with 2.9%, while the increase is significantly larger over parts of western Europe (up to 8%). In contrast to the AMVER data, the COADS data give particularly large enhancements over the North Atlantic. Ship emissions reduce methane lifetime by approximately 5%. CO2 and O3 give positive radiative forcing (RF), and CH4 and sulfate give negative forcing. The total RF is small (0.01–0.02 W/m2) and connected with large uncertainties. Increase in acidification is 3–10% in certain coastal areas. The approach presented here is clearly useful for characterizing the present impact of ship emission and will be valuable for assessing the potential effect of various emission‐control options.
Abstract. Nine different global models with detailed aerosol modules have independently produced instantaneous direct radiative forcing due to anthropogenic aerosols. The anthropogenic impact is derived from the difference of two model simulations with prescribed aerosol emissions, one for present-day and one for pre-industrial conditions. The difference in the solar energy budget at the top of the atmosphere (ToA) yields a new harmonized estimate for the aerosol direct radiative forcing (RF) under all-sky conditions. On a global annual basis RF is −0.22 Wm −2 , ranging from +0.04 to −0.41 Wm −2 , with a standard deviation of ±0.16 Wm −2 . Anthropogenic nitrate and dust are not included in this estimate. No model shows a significant positive all-sky RF. The corresponding clear-sky RF is −0.68 Wm −2 . The cloud-sky RF was derived based on all-sky and clear-sky RF and modelled cloud cover. It was significantly different from zero and ranged between −0.16 and +0.34 Wm −2 . A sensitivity analysis shows that the total aerosol RF is influenced by considerable diversity in simulated residence times, mass extinction coefficients and most importantly forcing efficiencies (forcing per unit optical depth). The clear-sky forcing efficiency (forcing per unit optical depth) has diversity comparable to that for the all-sky/ clear-sky forcing ratio. While the diversity in clear-sky forcing efficiency is impacted by factors Correspondence to: M. Schulz (michael.schulz@cea.fr) such as aerosol absorption, size, and surface albedo, we can show that the all-sky/clear-sky forcing ratio is important because all-sky forcing estimates require proper representation of cloud fields and the correct relative altitude placement between absorbing aerosol and clouds. The analysis of the sulphate RF shows that long sulphate residence times are compensated by low mass extinction coefficients and vice versa. This is explained by more sulphate particle humidity growth and thus higher extinction in those models where short-lived sulphate is present at lower altitude and vice versa. Solar atmospheric forcing within the atmospheric column is estimated at +0.82±0.17 Wm −2 . The local annual average maxima of atmospheric forcing exceed +5 Wm −2 confirming the regional character of aerosol impacts on climate. The annual average surface forcing is −1.02±0.23 Wm −2 . With the current uncertainties in the modelling of the radiative forcing due to the direct aerosol effect we show here that an estimate from one model is not sufficient but a combination of several model estimates is necessary to provide a mean and to explore the uncertainty.
Abstract.The AeroCom exercise diagnoses multicomponent aerosol modules in global modeling. In an initial assessment simulated global distributions for mass and mid-visible aerosol optical thickness (aot) were compared among 20 different modules. Model diversity was also explored in the context of previous comparisons. For the component combined aot general agreement has improved for the annual global mean. At 0.11 to 0.14, simulated aot values are at the lower end of global averages suggested by remote sensing from ground (AERONET ca. 0.135) and space (satellite composite ca. 0.15). More detailed comparisons, however, reveal that larger differences in regional distribution and significant differences in compositional mixture remain. Of Correspondence to: S. Kinne (stefan.kinne@zmaw.de) particular concern are large model diversities for contributions by dust and carbonaceous aerosol, because they lead to significant uncertainty in aerosol absorption (aab). Since aot and aab, both, influence the aerosol impact on the radiative energy-balance, the aerosol (direct) forcing uncertainty in modeling is larger than differences in aot might suggest. New diagnostic approaches are proposed to trace model differences in terms of aerosol processing and transport: These include the prescription of common input (e.g. amount, size and injection of aerosol component emissions) and the use of observational capabilities from ground (e.g. measurements networks) or space (e.g. correlations between aerosol and clouds).
[1] A sulfur cycle chemistry scheme with dimethyl sulfide (DMS), SO 2 , sulfate, H 2 S, and methanesulfonic acid (MSA) is included in the OsloCTM2 model, and concentrations of sulfur are calculated interactively with the oxidant chemistry. This allows more consistent estimates of aqueous phase oxidation of SO 2 to sulfate by O 3 , H 2 O 2 , and HO 2 NO 2 . The year 1996 is chosen as the standard, and a model run with 1996 meteorology and emissions is compared with 1996 observations. The results agree well with observations overall, although the model tends to overestimate SO 2 and underestimate sulfate in Northern Hemisphere winter owing to an oxidation limitation. A global budget for 1996 quantifying the various processes is investigated. Our model results give a global lifetime (global burden) of 1 day (0.25 Tg(S)) and 3.8 days (0.5 3 Tg(S)) for SO 2 and sulfate. Differences between the Southern Hemisphere, characterized by natural emissions and by loss of SO 2 by O 3 and H 2 O 2 oxidation, and the Northern Hemisphere, characterized by anthropogenic emissions and by large loss by dry deposition, are revealed. Significant changes in sulfur emissions have occurred over the last decades with decrease in the Unites States and Europe and increase in Southeast Asia. U.S., European, and Chinese SO 2 emissions have changed by À17.6%, À47.5%, and +93%, respectively. To study the impact of emission changes on the atmospheric composition, we have calculated distributions using the Global Emissions Inventory Activity (GEIA) 1985 inventory. The changes in sulfur emissions have significant changes on the sulfur concentrations and also some effect upon the oxidants. Increased emissions of NO x and hydrocarbons in China enhance O 3 , but increased sulfur inhibit the increase. The SO 2 oxidation by OH, which can lead to formation of new sulfate particles, is given special attention. The model run using GEIA 1985 anthropogenic emission inventory is compared with other model studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.