The paper describes the effect of an oscillating magnetic field (OMF) on the morphology and release properties of collagen gels containing magnetic nanoparticles and microparticles and fluorescent drug analogues. Collagen gels were prepared through fibrillogenesis of collagen in the presence of iron oxide magnetic particles averaging 10 nm or 3 mum in diameter and rhodamine-labeled dextran (Dex-R) of molecular weights between 3000-70 000 g/mol. Dextran molecules effectively simulate protein-based drugs, since they have similar molecular weights and dimensions. The paper discusses the effect of an OMF on the release properties of the gels and proposes an empirical model to predict the release rate. It also demonstrates the self-repair capability of collagen gels following the structural damage caused by an OMF.
Foliar nectaries on the midveins of 7-cm leaves from cotton (Gossypium hirsutum L., cv. Stoneville 213) were examined by light and electron microscopy. The nectaries consist of external multicellular papillae and internal subglandular tissue that extends from the bases of the papillae to the vascular tissue of the mid veins. The subglandular tissue is composed of small parenchyma cells; it does not contain sieve elements or xylem vessels. The parenchyma cells are rich in mitochondria, and their walls contain numerous pit fields having a high concentration of plasmodesmata. The absence of vascular tissue and the significance of the pit fields in the subglandular tissue are discussed in relation to symplastic transport of nectar secretions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.