N6‐(δ2‐isopentenyl) adenosine (iPA) has been previously shown to inhibit DNA and RNA synthesis in cultured lymphocytes and to suppress antibody formation in vivo. The effects have been extended to show that iPA has little preferential action on phytohemagglutinin‐transformed spleen cells in vitro. Finally, iPA is found to alter the methylation of all species of RNA but in a disproportionate manner in either PHA‐transformed or non‐stimulated lymphocytes.
Electrophoresis and ion-exchange column chromatography were used to separate the wide varieties of acid phosphatases with different biological and clinical significance. Band 0 was very strong in ascitic cells with many autophagic vacuoles, indicating a role in autophagic function. Band 1 was a membrane-bound acid phosphatase, seen mainly in the microsomal fraction. Band 3 was the major lysosomal acid phosphatase of all nonprostatic tissues. Bands 2 and 4 were antigenically identical to each other, and were observed in unusually high amounts in the prostate. The different electrophoretic mobility between bands 2 and 4 was due to their carbohydrate content. Band 5 was a characteristic enzyme of the osteoclast. The tartrate-sensitive enzymes included bands 0 through 4. Only band 5 was tartrate resistant. The tartrate-resistant acid phosphatase of erythrocytes was not detected by the electrophoresis method. Clinical applications were seen for both bands 2 and 5. Band 2 was a secretory enzyme, normally secreted into the seminal plasma. Band 2 was absorbed into the blood circulation in some prostatic cancer patients. A small amount of bands 2 and 4 was observed in nonprostatic tissues. The diagnostic value of band 2 resulted from its extremely high concentration in the prostate. Band 5 was not observed in the normal prostate. A high concentration of band 5 was observed in hairy cells, Gaucher cells, and osteoclasts. The serum level of band 5b was an indicator of osteoclastic activity in the bone. Elevation of band 5b in serum was observed in normal children during physiological bone growth, in Gaucher's disease, and in malignancies metastasized to bone.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.