Electroless (chemical) copper deposition, followed by electrolytic (galvanic) copper deposition, is used to construct electrical interconnects for electronic components on insulating substrate materials. As smooth substrates, such as glass or flexible materials like polyimide or polyethylene terephthalate, are used increasingly, achieving the required level of adhesion becomes more difficult. The film strain is one key variable that influences film adhesion. Standard X-ray diffraction based strain analysis was adapted for in situ strain monitoring during and after wet-chemical copper deposition. The results show that adding nickel suppresses an initial compressive strain that frequently appears in Ni-free baths. Adding ruthenium complexes to a standardized electroless copper formulation gradually shifts the strain from tensile to compressive. Spontaneous recrystallization at room temperature was monitored in detail for films obtained by direct current galvanic copper plating.
Strain in chemically deposited copper films on polymer substrates was determined by means of in situ X-ray diffraction (XRD), deposit stress analyzer (DSA) and spiral contractometer (SC). The strain evolution of the films was studied as a function of copper film thickness and electroless copper bath parameters, during and after deposition. The results are not indicative of a preferred crystallite orientation or texturing in the deposit. The copper film stress is controllable over a wide range of some 100 MPa from compressive to tensile stress by appropriate variation of bath parameters (e.g. temperature, concentration of bath components such as nickel, stabilizer and formaldehyde). A higher tendency of blister generation for relaxed or compressively stressed films is apparent, which implies that a sufficient level of tensile stress throughout the deposition promotes film adhesion. An observable change from tensile to compressive film stress during the cooling of the sample from bath operation to rinse water temperature is discussed in terms of substrate-induced thermal stress to the copper film. In this context, the difference in the substrate materials required for XRD (polymer), DSA (copper) and SC (stainless steel) may be a significant factor contributing to the diverging measured stress behaviors of the methods. Moreover, it is questionable whether SC stress data can be compared with XRD and DSA stress data, due to the low resolution of the SC method (~60 MPa).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.