The detection of fiducial points on faces has significantly been favored by the rapid progress in the field of machine learning, in particular in the convolution networks. However, the accuracy of most of the detectors strongly depends on an enormous amount of annotated data. In this work, we present a domain adaptation approach based on a two-step learning to detect fiducial points on human and animal faces. We evaluate our method on three different datasets composed of different animal faces (cats, dogs, and horses). The experiments show that our method performs better than state of the art and can use few annotated data to leverage the detection of landmarks reducing the demand for large volume of annotated data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.