The interest of the scientific community on methylammonium lead halide perovskites (MAPbX3, X = Cl, Br, I) for hybrid organic-inorganic solar cells has grown exponentially since the first report in 2009. This fact is clearly justified by the very high efficiencies attainable (reaching 20% in lab scale devices) at a fraction of the cost of conventional photovoltaics. However, many problems must be solved before a market introduction of these devices can be envisaged. Perhaps the most important to be addressed is the lack of information regarding the thermal and thermodynamic stability of the materials towards decomposition, which are intrinsic properties of them and which can seriously limit or even exclude their use in real devices. In this work we present and discuss the results we obtained using non-ambient X-ray diffraction, Knudsen effusion-mass spectrometry (KEMS) and Knudsen effusion mass loss (KEML) techniques on MAPbCl3, MAPbBr3 and MAPbI3. The measurements demonstrate that all the materials decompose to the corresponding solid lead (II) halide and gaseous methylamine and hydrogen halide, and the decomposition is well detectable even at moderate temperatures (~60 °C). Our results suggest that these materials may be problematic for long term operation of solar devices.
The total vapor pressures of the lanthanum trihalides LaCl 3 , LaBr 3 , and LaI 3 were measured by the torsion method, and their temperature dependence can be expressed by the following selected equations in the covered temperature ranges: LaCl 3 (s): log(p/kPa) ) (12.31 ( 0.10) -(17012 ( 100) K/T (1006-1122 K). LaCl 3 (l): log(p/kPa) ) (9.65 ( 0.23) -(13989 ( 272 K/T (1137-1188 K). LaBr 3 (s): log(p/kPa) ) (11.71 ( 0.20) -(15392 ( 150 K/T (955-1045 K). LaI 3 (s): log(p/kPa) ) (11.10 ( 0.20) -(14098 ( 200 K/T (932-1038 K). LaI 3 (l): log(p/kPa) ) (8.39 ( 0.15) -(11306 ( 200 K/T (1055-1123 K). Treating by second-and third-law methods the obtained results, the standard sublimation enthalpies, ∆ sub H°(298 K)) 334 ( 5, 308 ( 5, and 285 ( 3 kJ mol -1 for LaCl 3 , LaBr 3 , and LaI 3 , respectively, were determined.
The vaporization behaviour and thermodynamics of the ionic liquid 1-butyl-3-methylimidazolium bis(trifluoromethyl)sulfonylimide (BMImNTf2) were studied by combining the Knudsen Effusion Mass Loss (KEML) and Knudsen Effusion Mass Spectrometry (KEMS) techniques. KEML studies were carried out in a large temperature range (398-567) K by using effusion orifices with 0.3, 1, and 3 mm diameters. The vapor pressures so measured revealed no kinetically hindered vaporization effects and provided second-law vaporization enthalpies at the mean experimental temperatures in close agreement with literature. By exploiting the large temperature range covered, the heat capacity change associated with vaporization was estimated, resulting in a value of -66.8 J K(-1) mol(-1), much lower than that predicted from calorimetric measurements on the liquid phase and theoretical calculations on the gas phase. The conversion of the high temperature vaporization enthalpy to 298 K was discussed and the value Δ(l)(g)H(m)(298 K) = (128.6 ± 1.3) kJ mol(-1) assessed on the basis of data from literature and present work. Vapor pressure data were also processed by the third-law procedure using different estimations for the auxiliary thermal functions, and a Δ(l)(g)H(m)(298 K) consistent with the assessed value was obtained, although the overall agreement is sensitive to the accuracy of heat capacity data. KEMS measurements were carried out in the lower temperature range (393-467) K and showed that the largely prevailing ion species is BMIm(+), supporting the common view of BMImNTf2 vaporizing as individual, neutral ion pairs also under equilibrium conditions. By monitoring the mass spectrometric signal of this ion as a function of temperature, a second-law Δ(l)(g)H(m)(298 K) of 129.4 ± 7.3 kJ mol(-1) was obtained, well consistent with KEML and literature results. Finally, by combining KEML and KEMS measurements, the electron impact ionization cross section of BMIm(+) was estimated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.