Blood flow restriction training and HI-RT were similarly effective in increasing muscle strength, quadriceps muscle mass, and functionality in knee OA patients. Importantly, BFRT was also able to improve pain while inducing less joint stress, emerging as a feasible and effective therapeutic adjuvant in OA management.
The concept of personalized nutrition and exercise prescription represents a topical and exciting progression for the discipline given the large inter-individual variability that exists in response to virtually all performance and health related interventions. Appropriate interpretation of intervention-based data from an individual or group of individuals requires practitioners and researchers to consider a range of concepts including the confounding influence of measurement error and biological variability. In addition, the means to quantify likely statistical and practical improvements are facilitated by concepts such as confidence intervals (CIs) and smallest worthwhile change (SWC). The purpose of this review is to provide accessible and applicable recommendations for practitioners and researchers that interpret, and report personalized data. To achieve this, the review is structured in three sections that progressively develop a statistical framework. Section 1 explores fundamental concepts related to measurement error and describes how typical error and CIs can be used to express uncertainty in baseline measurements. Section 2 builds upon these concepts and demonstrates how CIs can be combined with the concept of SWC to assess whether meaningful improvements occur post-intervention. Finally, section 3 introduces the concept of biological variability and discusses the subsequent challenges in identifying individual response and non-response to an intervention. Worked numerical examples and interactive Supplementary Material are incorporated to solidify concepts and assist with implementation in practice.
Objective To conduct a systematic review and metaanalysis of the evidence on the effects of β-alanine supplementation on exercise capacity and performance. Design This study was designed in accordance with PRISMA guidelines. A 3-level mixed effects model was employed to model effect sizes and account for dependencies within data. Data sources 3 databases (PubMed, Google Scholar, Web of Science) were searched using a number of terms ('β-alanine' and 'Beta-alanine' combined with 'supplementation', 'exercise', 'training', 'athlete', 'performance' and 'carnosine'). Eligibility criteria for selecting studies Inclusion/ exclusion criteria limited articles to double-blinded, placebo-controlled studies investigating the effects of β-alanine supplementation on an exercise measure. All healthy participant populations were considered, while supplementation protocols were restricted to chronic ingestion. Cross-over designs were excluded due to the long washout period for skeletal muscle carnosine following supplementation. A single outcome measure was extracted for each exercise protocol and converted to effect sizes for meta-analyses. Results 40 individual studies employing 65 different exercise protocols and totalling 70 exercise measures in 1461 participants were included in the analyses. A significant overall effect size of 0.18 (95% CI 0.08 to 0.28) was shown. Meta-regression demonstrated that exercise duration significantly ( p=0.004) moderated effect sizes. Subgroup analyses also identified the type of exercise as a significant ( p=0.013) moderator of effect sizes within an exercise time frame of 0.5-10 min with greater effect sizes for exercise capacity (0.4998 (95% CI 0.246 to 0.753)) versus performance (0.1078 (95% CI −0.201 to 0.416)). There was no moderating effect of training status ( p=0.559), intermittent or continuous exercise ( p=0.436) or total amount of β-alanine ingested ( p=0.438). Co-supplementation with sodium bicarbonate resulted in the largest effect size when compared with placebo (0.43 (95% CI 0.22 to 0.64)). Summary/conclusions β-alanine had a significant overall effect while subgroup analyses revealed a number of modifying factors. These data allow individuals to make informed decisions as to the likelihood of an ergogenic effect with β-alanine supplementation based on their chosen exercise modality.
PurposeTo compare two modalities of exercise training (i.e., Endurance Training [ET] and High-Intensity Interval Training [HIT]) on health-related parameters in obese children aged between 8 and 12 years.MethodsThirty obese children were randomly allocated into either the ET or HIT group. The ET group performed a 30 to 60-minute continuous exercise at 80% of the peak heart rate (HR). The HIT group training performed 3 to 6 sets of 60-s sprint at 100% of the peak velocity interspersed by a 3-min active recovery period at 50% of the exercise velocity. HIT sessions last ∼70% less than ET sessions. At baseline and after 12 weeks of intervention, aerobic fitness, body composition and metabolic parameters were assessed.ResultsBoth the absolute (ET: 26.0%; HIT: 19.0%) and the relative VO2 peak (ET: 13.1%; HIT: 14.6%) were significantly increased in both groups after the intervention. Additionally, the total time of exercise (ET: 19.5%; HIT: 16.4%) and the peak velocity during the maximal graded cardiorespiratory test (ET: 16.9%; HIT: 13.4%) were significantly improved across interventions. Insulinemia (ET: 29.4%; HIT: 30.5%) and HOMA-index (ET: 42.8%; HIT: 37.0%) were significantly lower for both groups at POST when compared to PRE. Body mass was significantly reduced in the HIT (2.6%), but not in the ET group (1.2%). A significant reduction in BMI was observed for both groups after the intervention (ET: 3.0%; HIT: 5.0%). The responsiveness analysis revealed a very similar pattern of the most responsive variables among groups.ConclusionHIT and ET were equally effective in improving important health related parameters in obese youth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.