The wide use of chairside CAD/CAM restorations has increased the diversity of the restorative material. For the practitioner, the selection of the appropriate material is difficult amongst the variety offered by the market. Information on the characteristics of the products can be difficult to assess due to the lack of up-to-date classification and the lack of reliability of manufacturer's advertising. The purpose of this article is to structure the data on restorative materials provided by various sources in order for the practitioner to choose the product most suited to the clinical situation. The objective is to classify chairside CAD/CAM materials and to define their characteristics and indications.
The goals of this trial were, first, to produce a Raman mapping of decay and sound dentin samples, through accurate analysis of the Raman band spectra variations of mineral and organic components. The second goal was to confirm the correlation between the Raman signal and the signal of a fluorescent camera, by assaying the concentration of pentosidine and natural collagen fluorescent crosslink using reverse phase high-pressure liquid chromatography. The first correlation assumed a possible relationship between the signal observed with the camera and Raman spectroscopy. The second correlation assumed an association with the Maillard reaction. Absence of a correlation for this trial was that no association could be found between Raman spectra characteristics, fluorescence variation and the HPLC assay. Our results void this absence.
The purpose of this study was to compare three methods of evaluation of the apical seal. Thirty-six teeth were prepared with a ProFile device and filled according to three filling methods: Thermafil (n = 12), warm vertical condensation (n = 12), and the single cone technique (n = 2). The apical seal was recorded with three methods, each successively used on the same teeth: a fluid filtration method, an electrochemical method, and a dye penetration study. The three methods of evaluation did not rank the apical leakage of the three filling techniques in the same order. The fluid filtration method showed that the vertical condensation was superior to Thermafil, which was in turn superior to the single cone technique (p = 0.04). The dye penetration study showed that the Thermafil was a better technique than the vertical condensation and the single cone technique (p = 0.005). The electrochemical method showed no statistical difference among the three filling techniques. No correlation was found among the results obtained with the three methods of evaluation. This study shows that several studies are necessary before comparing the apical seal obtained with various filling techniques.
Preservation of natural tooth structure requires early detection of the carious lesion and is associated with comprehensive patient dental care. Processes aiming to detect carious lesions in the initial stage with optimum efficiency employ a variety of technologies such as magnifying loupes, transillumination, light and laser fluorescence (QLF ® and DIAGNOdent ® ) and autofluorescence (Soprolife ® and VistaCam ® ), electric current/impedance (CarieScan ® ), tomographic imaging and image processing. Most fluorescent caries detection tools can discriminate between healthy and carious dental tissue, demonstrating different levels of sensitivity and specificity. Based on the fluorescence principle, an LED camera (Soprolife ® ) was developed (Sopro-Acteon, La Ciotat, France) which combined magnification, fluorescence, picture acquisition and an innovative therapeutic concept called light-induced fluorescence evaluator for diagnosis and treatment (LIFEDT). This article is rounded off by a Soprolife ® illustration about minimally or even non-invasive dental techniques, distinguishing those that preserve or reinforce the enamel and enamel-dentine structures without any preparation (MIT1-minimally invasive therapy 1) from those that require minimum preparation of the dental tissues (MIT2 -minimally invasive therapy 2) using several clinical cases as examples. MIT1 encompasses all the dental techniques aimed at disinfection, remineralizing, reversing and sealing the caries process and MIT2 involves a series of specific tools, including microburs, air abrasion devices, sonic and ultrasonic inserts and photo-activated disinfection to achieve minimal preparation of the tooth. With respect to minimally invasive treatment and prevention, the use of lasers is discussed. Furthermore, while most practices operate under a surgical model, Caries Management by Risk Assessment (CaMBRA) encourages a medical model of disease prevention and management to control the manifestation of the disease, or keep the oral environment in a state of balance between pathological and preventive factors. Early detection and diagnosis and prediction of lesion activity are of great interest and may change traditional operative procedures substantially. Fluorescence tools with high levels of magnification and observational capacity should guide clinicians towards a more preventive and minimally invasive treatment strategy.
Nowadays, the preservation of dental pulp vitality is an integral part of our daily therapies. The success of these treatments depends on the clinical situation as well as the biomaterials used. Mineral Trioxide aggregate and BiodentineTM are commonly used as pulp capping materials. One objective of vital pulp therapy is the repair/regeneration of the pulp. In addition to the initial inflammatory status of the pulp, the nature and quality of the new mineralized tissue obtained after pulp capping directly influence the success of the treatment. In order to characterize the reparative dentin, in the current study, the chemical composition and microstructure of the dentin bridge after direct pulp capping using Biodentine™ and mineral trioxide aggregate (MTA) was studied by using Raman microspectroscopy and scanning electron microscopy, respectively. The results showed that the reparative dentin bridge observed in both groups presented dentin tubules and chemical composition similar to primary dentin. With the limitations of this study, the calcium-silicate-based cements used as pulp capping materials provide an optimal environment for pulp healing, resulting in a reparative dentin resembling on certain points of the primary dentin and the regeneration of the pulp.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.