The mooring system of floating wave energy converters (WECs) has a crucial impact on power generation efficiency, cost of delivered energy, proper operation, reliability and survivability. An effective design, addressing such competing objectives, requires appropriate mathematical models to predict mooring loads and dynamic response. However, conversely to traditional offshore engineering applications, experience in modelling mooring systems for WECs is limited, due to their unique requirement of maximising the motion while minimising loads and costs. Even though modelling approaches and software are available for this application, guidelines and critical comparison are still scarce. This paper proposes a discussion and validation of three mooring-line models: one quasi-static approach (developed in-house) and two dynamic lumped-mass approaches (the open source MoorDyn and the commercial OrcaFlex). The case study is a 1:32-scale prototype of a floating oscillating water column WEC tested in a wave tank, with three mooring lines, each one comprising of a riser and a clump weight. Validation, performed by imposing fairlead displacements and comparing resulting tensions, shows good agreement. The small scale may induce numerical instabilities and uncertainties in the parameter estimation. Finally, likely due to internal resonance of this particular mooring system, high-frequency content in the mooring tension is found, albeit absent in the kinematics of the floater.
The incoming menace of global overheating and depletion of fossil fuels, highlight the need for alternative, renewable, energy sources. In this context, ocean wave energy has a massive potential to contribute towards global decarbonisation. In optimising wave energy converters (WEC) productivity, state-of-the-art, model-based optimal control techniques are fundamental to enhance energy absorption efficiency. However, the vast majority of these optimal approaches inherently require wave excitation force estimators. In particular, in array configurations, the interaction between WEC devices has to be taken into account to achieve a consistent excitation force estimation. In this paper, a linear time-invariant (LTI) estimation approach for a WEC farm is proposed. The technique proposed is based upon the so-called ‘simple and effective estimator’, recently presented in the WEC literature, which reformulates the wave excitation force estimation problem as a traditional tracking loop. The results show that the proposed approach provides accurate estimates of the exciting force for every device in the array, with almost no design effort, and mild computational requirements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.