Mammalian Target of Rapamycin Complex 1 (mTORC1) is activated by growth factor-regulated phosphoinositide 3-kinase (PI3K)/Akt/Rheb signalling and extracellular amino acids (AAs) to promote growth and proliferation. These AAs induce translocation of mTOR to late endosomes and lysosomes (LELs), subsequent activation via mechanisms involving the presence of intralumenal AAs, and interaction between mTORC1 and a multiprotein assembly containing Rag GTPases and the heterotrimeric Ragulator complex. However, the mechanisms by which AAs control these different aspects of mTORC1 activation are not well understood. We have recently shown that intracellular Proton-assisted Amino acid Transporter 1 (PAT1)/SLC36A1 is an essential mediator of AA-dependent mTORC1 activation. Here we demonstrate in Human Embryonic Kidney (HEK-293) cells that PAT1 is primarily located on LELs, physically interacts with the Rag GTPases and is required for normal AA-dependent mTOR relocalisation. We also use the powerful in vivo genetic methodologies available in Drosophila to investigate the regulation of the PAT1/Rag/Ragulator complex. We show that GFP-tagged PATs reside at both the cell surface and LELs in vivo, mirroring PAT1 distribution in several normal mammalian cell types. Elevated PI3K/Akt/Rheb signalling increases intracellular levels of PATs and synergistically enhances PAT-induced growth via a mechanism requiring endocytosis. In light of the recent identification of the vacuolar H+-ATPase as another Rag-interacting component, we propose a model in which PATs function as part of an AA-sensing engine that drives mTORC1 activation from LEL compartments.
Mammalian CD98 heterodimeric amino acid transporters consist of a promiscuous single-pass transmembrane glycoprotein, CD98hc (CD98 heavy chain), and one of six multipass transmembrane proteins or 'light chains'. The heterodimeric complexes of CD98hc and the light chains LAT1 (L-type amino acid transporter 1) or LAT2 specifically promote sodium-independent System L exchange of neutral amino acids, including leucine. CD98hc is also implicated in other processes, including cell fusion, cell adhesion and activation of TOR (target of rapamycin) signalling. Surprisingly, recent reports suggested that insects lack a membrane-bound CD98hc, but in the present study we show that Drosophila CG2791 encodes a functional CD98hc orthologue with conservation in intracellular, transmembrane and extracellular domains. We demonstrate by RNA-interference knockdown in Drosophila Schneider cells that CG2791 and two Drosophila homologues of the mammalian CD98 light chains, Mnd (Minidiscs) and JhI-21, are required for normal levels of System L transport. Furthermore, we show that System L activity is increased by methoprene, an analogue of the developmentally regulated endocrine hormone juvenile hormone, an effect that is potentially mediated by elevated Mnd expression. Co-expression of CG2791 and JhI-21, but not CG2791 and Mnd, in Xenopus oocytes mediates System L transport. Finally, mapping of conserved sequences on to the recently determined crystal structure of the human CD98hc extracellular domain highlights two conserved exposed hydrophobic patches at either end of the domain that are potential protein-protein-interaction surfaces. Therefore our results not only show that there is functional conservation of CD98hc System L transporters in flies, but also provide new insights into the structure, functions and regulation of heterodimeric amino acid transporters.
Mammalian target of rapamycin (mTOR) plays a key role in determining how growth factor, nutrient and oxygen levels modulate intracellular events critical for the viability and growth of the cell. This is reflected in the impact of aberrant mTOR signalling on a number of major human diseases and has helped to drive research to understand how TOR is itself regulated. While it is clear that amino acids can affect TOR signalling, how these molecules are sensed by TOR remains controversial, perhaps because cells use different mechanisms as environmental conditions change. Even the question of whether they have an effect inside the cell or at its surface remains unresolved. This review summarises current ideas and suggests ways in which some of the models proposed might be unified to produce an amino acid detection system that can adapt to environmental change.
The IIS (insulin/IGF (insulin-like growth factor) signalling) cascade has an important role in regulating normal development and physiology, as evidenced by its effects in a host of major human diseases including cancer, Type 2 diabetes and neurodegeneration. Recently, it has become clear that multiple types of local nutrient-sensing mechanisms have an impact on cellular insulin-sensitivity through the downstream kinase TOR (target of rapamycin). In vivo analysis in flies has surprisingly highlighted PATs (proton-assisted amino acid transporters) as having a uniquely potent role in regulating IIS/TOR activity and growth, potentially via a novel signalling mechanism. Other molecules such as the heterodimeric amino acid transporter, CD98, which provides the principal route for cellular uptake of leucine, an amino acid implicated in regulating TOR, also appear to have important effects. As our understanding of how nutrient sensing has an impact on IIS/TOR increases, novel targets to modulate aberrant IIS in disease are likely to emerge, which could complement current strategies designed to block kinases in this pathway.
The PI3K (phosphoinositide 3-kinase)/Akt (also called protein kinase B) signalling cassette plays a central role in the response to growth factors, particularly insulin-like molecules, and its misregulation is a characteristic feature of diabetes and many forms of human cancer. Recent molecular genetic studies initiated in the fruitfly, Drosophila melanogaster, have highlighted two new cell-type-specific mechanisms regulating PI3K/Akt signalling and its downstream effects. First, the cellular response to this cassette is modulated by several classes of cell-surface transporters and sensors, suggesting an important role for extracellular nutrients in insulin-sensitivity. Secondly, various cell types show a markedly different subcellular distribution of the activated kinase Akt, influencing the cellular functions of this molecule. These findings reveal new mechanisms by which processes such as growth, lipogenesis and insulin resistance can be differentially regulated and may suggest novel strategies for treating insulin-linked diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.