Wood vinegar (WV) was obtained from charcoal production byproducts. The increase in demand for WV as an alternative pesticide requires more production of WV independent of conventional charcoal production. This research was intended to commence the production of WV from available furniture wood waste. The study included the following: (i) the preparation and performance of a pyrolysis kiln; and (ii) the application of the produced WV as a plant growth regulator of papaya plants in the nursery and as a pest insect repellent during maize storage. These experiments were arranged in a randomized block design. The observed variables included pyrolysis rate, the effect of WV on papaya growth in nursery, and the effect of WV in controlling infestation of maize weevils. The data were analyzed using analysis of variance and continued with Duncan's multiple difference test. The results showed that while the production of WV continuously occurred until the 90 th min, the maximum (139 mL) was reached at the 10 th min. Pyrolysis of 1,000 g of chips of wood-planer's waste yielded WV, tar, bio-oil, and char in quantities of 487.67 mL, 41.76 g, 2.93 mL, and 222 g respectively. The treatment using WV (50 mL/L) increased the diameter of papaya stems in the nursery. Mixing and fuming application of 5 mL of WV as a pest insect repellent on 200 g of maize on the storage could increase the number of the dead maize weevil and reduce the damage maize kernel.
The carbonization of lignocelullosic waste to obtain wood vinegar (WV) was investigated in this work. WV was used as a botanical insecticide against armyworm (Spodoptera litura), which is known as a major pest of soybean crops in Indonesia. This study includes the following: (i) the assessment of potential use of lignocellulosic waste from mahogany wooden-sandal home industry; (ii) the determination of the yield of various components of carbonization process, from each unit of the waste; and (iii) the application of the produced WV as larvicide on S. litura larvae in the laboratory. The experiments were arranged in a completely randomized design, and the observed variables included mortality and anti-feedant activity of S. litura larvae. The data were analyzed using analysis of variance with Duncan's multiple differences test. The results showed that the amount of wood waste generated at wooden-sandal craftsman level was 16.12%. Carbonization of 1,000 g of the wood waste yielded WV, tar, bio-oil, and char in quantities of 442.68 g, 36.5 g, 4.04 g, and 251 g, respectively. The treatment using WV concentration of 1.5% to 3.0% showed low larvacidal action, which gave LC50 value of 12.82%, but it had adequate anti-feedant activity.
A novel type of ceramic material was produced by mixing sago waste ash from the sago processing industry in Indonesia with clay. The composition was prepared by adding 50 %wt amount of sago waste into the clay, then a series of samples was milled for 6 h, 12 h, 24 h and 48 h, respectively. The samples were dry pressed and sintered at temperatures ranging from 800?C to 1200?C. The influence of the sintering temperature and the milling time on bulk density, firing shrinkage, water adsorption, and hardness was studied in detail. The results demonstrate that the low water absorption of less than 0.5% and the highest hardness of 5.82 GPa were obtained for the sample sintered at 1100?C and milled for 48 h. The investigation of the absorptive properties of such ceramics indicates that they could be recommended as a promising material for manufacturing of unglazed floor tiles.
The study consisted of reactor design used for transesterification process, effect of glycerol separation on transesterification reaction, determination of biodiesel quality, and mass balance analysis. The reactor was designed by integrating circulated pump/stirrer, static mixer, and sprayer that intensify the reaction in the outer tank reactor. The objective was to reduce the use of methanol in excess and to shorten the processing time. The results showed that the reactor that applied the glycerol separation was able to compensate for the decreased use of the reactant methanol from 6:1 to 5:1 molar ratio, and changed the mass balance in the product, including: (i) the increase of biodiesel production from 42.37% to 49.34%, and (ii) the reduction of methanol in excess from 42.37% to 32.89%. The results suggested that the efficiency of biodiesel production could be increased with the glycerol separation engineering. AbstrakDesain Reaktor Biodiesel dengan Pemisahan Gliserol untuk Meningkatkan Hasil Produksi Biodiesel. Penelitian ini terdiri dari desain reaktor yang digunakan untuk proses transesterifikasi, pengaruh pemisahan gliserol pada reaksi transesterifikasi, penentuan kualitas biodiesel, dan analisis neraca massa. Reaktor didesain dengan mengintegrasikan pompa/pengaduk, mixer statis, dan sprayer yang mengintensifikasi reaksi pada reaktor tangki luar. Tujuan penelitian ini adalah untuk menurunkan jumlah methanol yang berlebih dan mempercepat waktu pemrosesan. Hasil penelitian menunjukan bahwa reaktor yang menggunakan pemisahan gliserol dapat mengkompensasi penurunan penggunaan reaktan methanol dari 6:1 hingga 5:1 rasio molar, dan mengubah neraca massa pada produk yang antara lain: (i) peningkatan produksi biodiesel dari 42,37% hingga 49,34%, dan (ii) penurunan metano berlebih dari 42,37% hingga 32,89%. Berdasarkan hasil penelitian, efisiensi produksi biodiesel dapat ditingkatkan dengan rekayasa pemisahan gliserol.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.