Electrical conductivity is an important indicator for water quality assessment. Since the composition of mineral salts affects the electrical conductivity of groundwater, it is important to understand the relationships between mineral salt composition and electrical conductivity. In this present paper, we develop an adaptive neuro-fuzzy inference system (ANFIS) model for groundwater electrical conductivity based on the concentration of positively charged ions in water. It is shown that the ANFIS model outperforms more traditional methods of modelling electrical conductivity based on the total solids dissolved in the water, even though ANFIS uses less information. Additionally, the fuzzy rules in the ANFIS model provide a categorization of ground water samples in a manner that is consistent with the current understanding of geophysical processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.