). † These authors contributed equally to this work. SummaryPungency in Capsicum fruits is due to the accumulation of the alkaloid capsaicin and its analogs. The biosynthesis of capsaicin is restricted to the genus Capsicum and results from the acylation of an aromatic moiety, vanillylamine, by a branched-chain fatty acid. Many of the enzymes involved in capsaicin biosynthesis are not well characterized and the regulation of the pathway is not fully understood. Based on the current pathway model, candidate genes were identified in public databases and the literature, and genetically mapped. A published EST co-localized with the Pun1 locus which is required for the presence of capsaicinoids. This gene, AT3, has been isolated and its nucleotide sequence has been determined in an array of genotypes within the genus. AT3 showed significant similarity to acyltransferases in the BAHD superfamily. The recessive allele at this locus contains a deletion spanning the promoter and first exon of the predicted coding region in every non-pungent accession tested. Transcript and protein expression of AT3 was tissue-specific and developmentally regulated. Virus-induced gene silencing of AT3 resulted in a decrease in the accumulation of capsaicinoids, a phenotype consistent with pun1. In conclusion, gene mapping, allele sequence data, expression profile and silencing analysis collectively indicate that the Pun1 locus in pepper encodes a putative acyltransferase, and the pun1 allele, used in pepper breeding for nearly 50 000 years, results from a large deletion at this locus.
As genome and cDNA sequencing projects progress, a tremendous amount of sequence information is becoming publicly available. These sequence resources can be exploited for gene discovery and marker development. Simple sequence repeat (SSR) markers are among the most useful because of their great variability, abundance, and ease of analysis. By in silico analysis of 10,232 non-redundant expressed sequence tags (ESTs) in pepper as a source of SSR markers, 1,201 SSRs were found, corresponding to one SSR in every 3.8 kb of the ESTs. Eighteen percent of the SSR-ESTs were dinucleotide repeats, 66.0% were trinucleotide, 7.7% tetranucleotide, and 8.2% pentanucleotide; AAG (14%) and AG (12.4%) motifs were the most abundant repeat types. Based on the flanking sequences of these 1,201 SSRs, 812 primer pairs that satisfied melting temperature conditions and PCR product sizes were designed. 513 SSRs (63.1%) were successfully amplified and 150 of them (29.2%) showed polymorphism between Capsicum annuum 'TF68' and C. chinense 'Habanero'. Dinucleotide SSRs and EST-SSR markers containing AC-motifs were the most polymorphic. Polymorphism increased with repeat length and repeat number. The polymorphic EST-SSRs were mapped onto the previously generated pepper linkage map, using 107 F(2) individuals from an interspecific cross of TF68 x Habanero. One-hundred and thirtynine EST-SSRs were located on the linkage map in addition to 41 previous SSRs and 63 RFLP markers, forming 14 linkage groups (LGs) and spanning 2,201.5 cM. The EST-SSR markers were distributed over all the LGs. This SSR-based map will be useful as a reference map in Capsicum and should facilitate the use of molecular markers in pepper breeding.
SUMMARYEvasion or active suppression of host defenses are critical strategies employed by biotrophic phytopathogens and hemibiotrophs whose infection mechanism includes sequential biotrophic and necrotrophic stages. Although defense suppression by secreted effector proteins has been well studied in bacteria, equivalent systems in fungi and oomycetes are poorly understood. We report the characterization of SNE1 (suppressor of necrosis 1), a gene encoding a secreted protein from the hemibiotrophic oomycete Phytophthora infestans that is specifically expressed at the transcriptional level during biotrophic growth within the host plant tomato (Solanum lycopersicum). Using transient expression assays, we show that SNE1 suppresses the action of secreted cell death-inducing effectors from Phytophthora that are expressed during the necrotrophic growth phase, as well as programmed cell death mediated by a range of Avr-R protein interactions. We also report that SNE1 contains predicted NLS motifs and translocates to the plant nucleus in transient expression studies. A conceptual model is presented in which the sequential coordinated secretion of antagonistic effectors by P. infestans first suppresses, but then induces, host cell death, thereby providing a highly regulated means to control the transition from biotrophy to necrotrophy.
The genome of tomato (Solanum lycopersicum) is being sequenced by an international consortium of 10 countries (Korea, China, the United Kingdom, India, The Netherlands, France, Japan, Spain, Italy and the United States) as part of a larger initiative called the ‘International Solanaceae Genome Project (SOL): Systems Approach to Diversity and Adaptation’. The goal of this grassroots initiative, launched in November 2003, is to establish a network of information, resources and scientists to ultimately tackle two of the most significant questions in plant biology and agriculture: (1) How can a common set of genes/proteins give rise to a wide range of morphologically and ecologically distinct organisms that occupy our planet? (2) How can a deeper understanding of the genetic basis of plant diversity be harnessed to better meet the needs of society in an environmentally friendly and sustainable manner? The Solanaceae and closely related species such as coffee, which are included in the scope of the SOL project, are ideally suited to address both of these questions. The first step of the SOL project is to use an ordered BAC approach to generate a high quality sequence for the euchromatic portions of the tomato as a reference for the Solanaceae. Due to the high level of macro and micro-synteny in the Solanaceae the BAC-by-BAC tomato sequence will form the framework for shotgun sequencing of other species. The starting point for sequencing the genome is BACs anchored to the genetic map by overgo hybridization and AFLP technology. The overgos are derived from approximately 1500 markers from the tomato high density F2-2000 genetic map (http://sgn.cornell.edu/). These seed BACs will be used as anchors from which to radiate the tiling path using BAC end sequence data. Annotation will be performed according to SOL project guidelines. All the information generated under the SOL umbrella will be made available in a comprehensive website. The information will be interlinked with the ultimate goal that the comparative biology of the Solanaceae—and beyond—achieves a context that will facilitate a systems biology approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.