In this study, highly miniaturized short-wavelength meander line employing periodically patterned ground structure (PPGS) was developed for application to miniaturized on-chip passive component on GaAs MMIC (monolithic microwave integrated circuit). The meander line employing PPGS showed shorter wavelength and slow-wave characteristic compared with conventional meander line. The wavelength of the meander line employing PPGS structure was 17 % of the conventional meander line on GaAs MMIC. Due to its slow-wave structure, the meander line employing PPGS exhibited large propagation constant than conventional meander line, which resulted in larger phase shift and shunt inductance value. Above results indicate that the meander line employing PPGS is a promising candidate for application to a development of miniaturized on-chip RF components as well as inductor with a high inductance value on GaAs MMIC.
Most of the transmission system has a network structure to improve the reliability and stability of a power system. Fault current is continuously expected to increase by the increase of the power demand. If fault current exceeds the cutoff capacity of a circuit breaker, the circuit breaker is broken and the damage by fault current is expanded throughout the power system. Superconducting fault current limiter (SFCL) was designed to solve this problem in a power system. In this paper, we investigated the current limiting characteristics and power burden of superconducting elements of a flux-coupling type SFCL in three-phase power system. A Flux-coupling type SFCL is one of the resistive type SFCLs. The flux-coupling type SFCL was made by using a transformer. Reactors connected in each phase shared an iron core. When the superconducting elements were quenched in fault phase, the fault current flowed into the primary and secondary coils simultaneously. Thus, the current flowed into primary and secondary coils of sound phase by the magnetic coupling flux. Meanwhile, when the current of sound phase exceeded the critical current of the SFCL, superconducting elements connected in the sound phase were quenched. The value of the fault current tended to decrease as the first reactor's ratio increased. Furthermore, the power burden of the superconducting element was reduced. The reduced power burden of the superconducting elements shortens the recovery time of the superconducting element, which is advantageous for cooperation with a reclosing system when the SFCL is applied to the system. As a result, we confirmed that the flux-coupling type SFCL operated effectively in the three-phase power system.Index Terms-Critical current, flux-coupling type SFCL, magnetic coupling flux, power burden, reclosing system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.