We investigated the anti-inflammatory effects of electroacupuncture (EA) on carrageenan-induced inflammatory model in association with peripheral and spinal COX-2 expression. EA with 2, 15 and 120 Hz, especially 2 Hz, had significant inhibitory effects on the developing of edema and hyperalgesia, which was measured in 30-min intervals after carrageenan injection. Therefore, we investigated whether the effect of 2 Hz EA on carrageenan-induced edema and hyperalgesia is associated with peripheral and spinal expression of inflammatory proteins. The expression of cyclooxygenase (COX)-1, COX-2, and inducible nitric oxide synthase (iNOS) was inhibited by 2 Hz EA in carrageenan-injected rat paws. Interestingly, we found that the mRNA of COX-1 and COX-2 expression in the spine was not induced by 2 Hz EA treatment after carrageenan-induced peripheral inflammation. In addition, synthesis of prostaglandin E(2) (PGE(2)) was partially inhibited by 2 Hz EA treatment in both peripheral and spinal nociceptive regions. In conclusion, EA treatment might be a useful therapy for mitigation of inflammatory edema and hyperalgesia through regulation of COX-2 expression in both peripheral and central nociceptive sites.
When we evaluated changes of glial fibrillary acidic protein (GFAP) and two glutamate transporter (GTs) by immunohistochemistry, expression of GFAP showed a significant increase in complete Freund's adjuvant (CFA)-injected rats; however, this expression was strongly inhibited by electroacupuncture (EA) stimulation. Robust downregulation of glutamate-aspartate transporter (GLAST) and glutamate transporter-1 (GLT-1) was observed in CFA-injected rats; however, EA stimulation resulted in recovery of this expression. Double-labeling staining showed co-localization of a large proportion of GLAST or GLT-1 with GFAP. Using Western blot, we confirmed protein expression of two GTs, but no differences in the mRNA content of these GTs were observed. Because EA treatment resulted in strong inhibition of CFA-induced proteasome activities, we examined the question of whether thermal sensitivities and GTs expression could be regulated by proteasome inhibitor MG132. CFA-injected rats co-treated with EA and MG132 showed a significantly longer thermal sensitivity, compared with CFA-injected rats with or without MG132. Both EA and MG132 blocked CFA-induced GLAST and GLT-1 downregulation within the spinal cord. These results provide evidence for involvement of GLAST and GLT-1 in response to activation of spinal astrocytes in an EA antinociceptive effect. Antinociceptive effect of EA may be induced via proteasome-mediated regulation of spinal GTs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.