Tumor necrosis factor-alpha (TNF) is a cytokine that displays a pleomorphic array of effects on different cell populations. Evidence is presented that TNF may be constitutively produced by B-cell chronic lymphocytic leukemia (B-CLL) and hairy cell leukemia (HCL) cells and that it may play a relevant role in these diseases. These conclusions are based on the presence of circulating levels of TNF in the serum of 20 of the 24 patients tested (83.3%), while undetectable values were found in normal sera. The suggestion that the increased serum levels were due to the leukemic cell population is strengthened by the evidence that purified B-CLL and HCL cells may constitutively release variable degrees of TNF. These levels markedly increase after incubation with interferon gamma or phytohemagglutinin (PHA) plus phorbol myristate acetate (PMA). The cellular release of TNF by primary B-CLL cells was significantly (P less than .001) higher in B-CLL stage O-I patients compared with stage II-III patients. The demonstration that, in B-cell chronic lymphoproliferative disorders, the pathologic cells may release TNF was further confirmed by the presence of the mRNA for this cytokine in primary and/or in pre-activated cells. Recombinant TNF was capable of inducing a proliferative signal only in a minority of cases (4/24); in most cases it was ineffective, and, in a few, it reduced the degree of proliferation. Furthermore, in costimulatory experiments with interleukin-2 and PHA plus PMA, TNF was ineffective. On the other hand, when primary B-CLL cells were incubated in the presence of an anti-TNF antibody, in 8 of 12 independent experiments a 2- to 15-fold increase in thymidine uptake was documented. Taken together, these results suggest that TNF may play a regulatory role in the progression of the neoplastic clone in B-cell chronic lymphoproliferative disorders and may be implicated in some of the side effects associated with these diseases.
Tumor necrosis factor-alpha (TNF) is a cytokine that displays a pleomorphic array of effects on different cell populations. Evidence is presented that TNF may be constitutively produced by B-cell chronic lymphocytic leukemia (B-CLL) and hairy cell leukemia (HCL) cells and that it may play a relevant role in these diseases. These conclusions are based on the presence of circulating levels of TNF in the serum of 20 of the 24 patients tested (83.3%), while undetectable values were found in normal sera. The suggestion that the increased serum levels were due to the leukemic cell population is strengthened by the evidence that purified B-CLL and HCL cells may constitutively release variable degrees of TNF. These levels markedly increase after incubation with interferon gamma or phytohemagglutinin (PHA) plus phorbol myristate acetate (PMA). The cellular release of TNF by primary B-CLL cells was significantly (P less than .001) higher in B-CLL stage O-I patients compared with stage II-III patients. The demonstration that, in B-cell chronic lymphoproliferative disorders, the pathologic cells may release TNF was further confirmed by the presence of the mRNA for this cytokine in primary and/or in pre-activated cells. Recombinant TNF was capable of inducing a proliferative signal only in a minority of cases (4/24); in most cases it was ineffective, and, in a few, it reduced the degree of proliferation. Furthermore, in costimulatory experiments with interleukin-2 and PHA plus PMA, TNF was ineffective. On the other hand, when primary B-CLL cells were incubated in the presence of an anti-TNF antibody, in 8 of 12 independent experiments a 2- to 15-fold increase in thymidine uptake was documented. Taken together, these results suggest that TNF may play a regulatory role in the progression of the neoplastic clone in B-cell chronic lymphoproliferative disorders and may be implicated in some of the side effects associated with these diseases.
We have previously reported the presence of activated (HLA-DR+) T cells in multiple myeloma (MM) patients. These cells produce high amounts of interleukin (IL)-2 and interferon (IFN)-gamma and generate a potent antiplasma cell activity after appropriate in vitro stimulation, but they are unable in vivo to hold in check the disease. Activated T cells are highly susceptible to apoptosis, a form of programmed cell death involved in the modulation of immune responses and regulated by molecules such as Fas (CD95) and bcl-2. The aim of this study was to determine the expression of Fas and bcl-2 antigens and the susceptibility to apoptosis in T cells of MM patients. Fas+ cells were significantly higher, whereas bcl-2+ cells were significantly lower in MM patients than in the controls. MM patients with the highest number of HLA-DR+ T cells showed the highest Fas and the lowest bcl-2 expression. Two-color cytofluorometric analysis confirmed in individual cells that HLA-DR+ T cells coexpressed Fas and lacked bcl-2. Susceptibility to apoptosis was then investigated to evaluate the consequence of dysregulated Fas and bcl-2 expression. The percentage of apoptotic cells after incubation in medium alone (spontaneous apoptosis) or in the presence of methylprednisolone (MP) or anti-Fas monoclonal antibody (triggered apoptosis) was significantly higher in MM and mainly restricted to HLA-DR+ T cells. Spontaneous apoptotosis was reverted by exogenous IL-2. In conclusion, MM T cells have a dysregulated expression of Fas and bcl-2 antigens that is associated with an enhanced susceptibility to apoptosis. These data may unravel a novel mechanism by which activated MM T cells are weakened in their ability to exert an effective antitumor activity in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.