Both high fat diet (HFD) and high carbohydrate diet (HCD) modulate brain fatty acids (FA) composition. Notwithstanding, there is a lack of information on time sequence of brain FA deposition either for HFD or HCD. The changes in brain FA composition in mice fed with HFD or HCD for 7, 14, 28, or 56 days were compared with results of 0 (before starting given the diets). mRNA expressions of allograft inflammatory factor 1 (Aif1), cyclooxygenase-2 (Cox 2), F4/80, inducible nitric oxide synthase (iNOS), integrin subunit alpha m (Itgam), interleukin IL-1β (IL-1β), IL-6, IL-10, and tumor necrosis factor alpha (TNF-α) were measured. The HFD group had higher speed of deposition of saturated FA (SFA), monounsaturated FA (MUFA), and polyunsaturated FA (PUFA) at the beginning of the experimental period. However, on day 56, the total amount of SFA, MUFA, and PUFA were similar. mRNA expressions of F4/80 and Itgam, markers of microglia infiltration, were increased (p < 0.05) in the brain of the HCD group whereas inflammatory marker index (IMI) was higher (46%) in HFD group. In conclusion, the proportion of fat and carbohydrates in the diet modulates the speed deposition of FA and expression of inflammatory gene markers.
We previously reported that both the high-carbohydrate diet (HCD) and high-fat diet (HFD) given for two months promote lipid deposition and inflammation in the liver and brain of mice. The results obtained indicate a tissue-specific response to both diets. Herein, we compared the effects of HCD and HFD on fatty acid (FA) composition and inflammation in the gastrocnemius muscle. Male Swiss mice were fed with HCD or HFD for 1 or 2 months. Saturated FA (SFA), monounsaturated FA (MUFA), n-3 polyunsaturated FA (n-3 PUFA), and n-6 PUFA were quantified. The activities of stearoyl-CoA desaturase 1 (SCD-1), D-6 desaturase (D6D), elongase 6, and de novo lipogenesis (DNL) were estimated. As for indicators of the inflammatory tissue state, we measured myeloperoxidase (MPO) activity and gene expression of F4/80, tumor necrosis factor-a (TNF-a), interleukin (IL)-4, IL-6, and IL-10. The HCD led to a lower deposition of SFA, MUFA, n-3 PUFA, and n-6 PUFA compared to HFD. However, the HCD increased arachidonic acid levels, SFA/n-3 PUFA ratio, DNL, SCD-1, D6D, and MPO activities, and expression of IL-6, contrasting with the general idea that increased lipid deposition is associated with more intense inflammation. The HCD was more potent to induce skeletal muscle inflammation than the HFD, regardless of the lower lipid accumulation.
High caloric intake promotes chronic inflammation, insulin resistance, and chronic diseases such as type-2 diabetes, which may be prevented by food restriction (FR). The effect of FR on expression of pro-inflammatory and anti-inflammatory genes in adipose tissue, liver, muscle, and brain was compared. Male Swiss mice were submitted to FR (FR group) or had free access to food (control group) during 56 days. The liver, gastrocnemius muscle, brain, and epididymal white adipose tissue (WAT) were collected for analysis of gene expressions. FR attenuated inflammation in the liver, brain, and gastrocnemius muscle but did not markedly change inflammatory gene expression in epididymal WAT. We concluded that adipose tissue was less responsive to FR in terms of gene expression of pro-inflammatory and anti-inflammatory genes.
The impact of food restriction (FR) during 56 days on serum levels of cytokines in mice fed a high-fat diet (HFD) or high-carbohydrate diet (HCD) were evaluated. The amount of food was reduced 50% for HFD-FR and HCD-FR groups compared to mice receiving free access to HFD (HFD group) or HCD (HCD group). We quantified the serum levels of basic fibroblast growth factor, granulocyte-macrophage colony-stimulating factor, inducible protein 10, interferon γ, interleukin 1α (IL-1α), IL-1β, IL-2, IL-4, IL-5, IL-6, IL-10, IL-12, IL-13, IL-17, keratinocyte chemoattractant, macrophage inflammatory protein-1α, monocyte chemotactic protein 1, monokine induced by IFN-γ, and tumor necrosis factor α. Only IL-12 levels were lower (P<0.05), for both HFD-FR (HFD-FR vs HFD) and HCD-FR (HCD-FR vs HCD). Therefore, IL-12 levels could be considered a biological marker of the beneficial effects of FR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.