Xylem vessels of Prunus persica Batsch (peach) and Juglans regia L. (walnut) are vulnerable to frost-induced embolism. In peach, xylem embolism increased progressively over the winter, reaching a maximum of 85% loss of hydraulic conductivity (PLC) in early March. Over winter, PLC in walnut approached 100%, but the degree of xylem embolism varied during the winter, reflecting the ability of walnut to generate positive xylem pressures in winter and spring. In contrast, positive xylem pressures were not observed in peach. Controlled freeze-thaw experiments showed that frost alone is insufficient to increase embolism in peach; evaporative conditions during thawing are also required. However, when both species were protected from frost, PLC was zero. At bud break, there was complete recovery from embolism in walnut, whereas PLC remained high in peach. Three mechanisms responsible for the restoration of branch hydraulic conductivity were identified in walnut: the development of stem pressure, the development of root pressure and the formation of a new ring of functional xylem, whereas only one mechanism was observed in peach (new functional ring). The climatic conditions necessary for the manifestation of these mechanisms were investigated.
The current controversy about the "cohesion-tension" of water ascent in plants arises from the recent cryo-scanning electron microscopy (cryo-SEM) observations of xylem vessels content by Canny and coworkers (1995). On the basis of these observations it has been claimed that vessels were emptying and refilling during active transpiration in direct contradiction to the previous theory. In this study we compared the cryo-SEM data with the standard hydraulic approach on walnut (Juglans regia) petioles. The results of the two techniques were in clear conflict and could not both be right. Cryo-SEM observations of walnut petioles frozen intact on the tree in a bath of liquid nitrogen (LN 2 ) suggested that vessel cavitation was occurring and reversing itself on a diurnal basis. Up to 30% of the vessels were embolized at midday. In contrast, the percentage of loss of hydraulic conductance (PLC) of excised petiole segments remained close to 0% throughout the day. To find out which technique was erroneous we first analyzed the possibility that PLC values were rapidly returned to zero when the xylem pressures were released. We used the centrifugal force to measure the xylem conductance of petiole segments exposed to very negative pressures and established the relevance of this technique. We then analyzed the possibility that vessels were becoming partially air-filled when exposed to LN 2 . Cryo-SEM observations of petiole segments frozen shortly after their xylem pressure was returned to atmospheric values agreed entirely with the PLC values. We confirmed, with water-filled capillary tubes exposed to a large centrifugal force, that it was not possible to freeze intact their content with LN 2 . We concluded that partially air-filled conduits were artifacts of the cryo-SEM technique in our study. We believe that the cryo-SEM observations published recently should probably be reconsidered in the light of our results before they may be used as arguments against the cohesion-tension theory.The "cohesion-tension" (CT) theory of sap ascent in plants was proposed more than a century ago by Bö hm (1893) and Dixon and Joly (1894). The theory postulates that (a) the xylem conduits form continuous water columns from the roots to the leaves, (b) the columns are held in place thanks to the capillary pressures that develop in the leaf mesophyll, and (c) leaf transpiration pulls water out of the xylem, which causes water absorption by the roots. A corollary of the theory is that high xylem tensions (negative pressures) must develop inside the xylem conduits. Over the past century a considerable amount of experimental data have been cumulated by plant physiologists, all consistent with the CT theory.However, recent direct measurements of sap pressure with xylem pressure probes (Zimmermann et al., 1994) and direct cryo-scanning electron microscopy (cryo-SEM) observations of xylem vessels content during transpiration (Canny, 1997b(Canny, , 1998b have questioned the validity of the CT theory. New experiments with the xylem pressure probe ...
Pressure transducers were attached to twigs of orchard trees and potted trees of walnut (Juglans regia L.) to measure winter stem xylem pressures. Experimental potted trees were partially defoliated in the late summer and early autumn to lower the amount of stored carbohydrates. Potted trees were placed in cooling chambers and subjected to various temperature regimes, including freeze-thaw cycles. Xylem pressures were inversely proportional to the previous 48-h air temperature, but positively correlated with the osmolarity of the xylem sap. Defoliated trees had significantly lower concentrations of stored carbohydrates and significantly lower xylem sap osmolarities than controls. Plants kept at 1.5 degrees C developed xylem pressures up to 40 kPa, just 7% of the theoretical osmotic pressure of the xylem sap. However, exposure to low, nonfreezing temperatures followed by freeze-thaw cycles resulted in pressures over 210 kPa, which was 39% of the theoretical osmotic pressure. A simple osmotic model could account for the modest positive winter pressures at low, nonfreezing temperatures, but not for the synergistic effects of freeze-thaw cycles.
Measurements of air and soil temperatures and xylem pressure were made on 17-year-old orchard trees and on 5-year-old potted trees of walnut (Juglans regia L.). Cooling chambers were used to determine the relationships between temperature and sugar concentration ([glucose] + [fructose] + [sucrose], GFS) and seasonal changes in xylem pressure development. Pressure transducers were attached to twigs of intact plants, root stumps and excised shoots while the potted trees were subjected to various temperature regimes in autumn, winter and spring. Osmolarity and GFS of the xylem sap (apoplast) were measured before and after cooling or warming treatments. In autumn and spring, xylem pressures of up to 160 kPa were closely correlated with soil temperature but were not correlated with GFS in xylem sap. High root pressures were associated with uptake of mineral nutrients from soil, especially nitrate. In autumn and spring, xylem pressures were detected in root stumps as well as in intact plants, but not in excised stems. In contrast, in winter, 83% of the xylem sap osmolarity in both excised stems and intact plants could be accounted for by GFS, and both GFS and osmolarity were inversely proportional to temperature. Plants kept at 1.5 degrees C developed positive xylem pressures up to 35 kPa, xylem sap osmolarities up to 260 mosmol l(-1) and GFS concentrations up to 70 g l(-1). Autumn and spring xylem pressures, which appeared to be of root origin, were about 55% of the theoretical pressures predicted by osmolarity of the xylem sap. In contrast, winter pressures appeared to be of stem origin and were only 7% of the theoretical pressures, perhaps because of a lower stem water content during winter.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.