In light of environmental concerns, the textile industry has accelerated efforts to reduce or eliminate water consumption in all areas of yarn preparation, dyeing, and finishing. Supercritical fluid dyeing technology has the potential to accomplish this objective in many commercial textile applications around the world, both at present and in the future around the world. Increased interest in this technology has made a fundamental understanding of thermophysical (equilibrium solubility) and transport (kinetics) properties of such fluids and fluid mixtures necessary. Supercritical carbon dioxide (SC-CO2) is one of the most environmentally acceptable solvents in use today, and textile processes using it have many advantages when compared to conventional aqueous processes. − Positive environmental effects range from drastically reduced water consumption to eliminating hazardous industrial effluent. Furthermore, economic benefits include increased productivity and energy savings. Successfully commercializing supercritical fluid CO2 processing will improve the economics of dyeing and other textile chemical processes by eliminating water usage and wastewater discharges and increasing productivity by reducing processing times as well as required chemicals and auxiliaries and reducing energy consumption and air emissions. As a result, SC-CO2 processing will be more rapid, more economical, and more environmentally friendly.
Ammonia/ammonium thiocyanate (NH3/NH4SCN) is an excellent swelling agent and solvent for cellulose, even at a high degree of polymerization. Because polymorphic conversion in cellulose has been a long‐standing, perplexing, troublesome problem, we have undertaken to study that mechanism. Solid state CP/MAS 13C‐NMR and X‐ray analysis proved to be very useful analytical techniques for the task. It appears that during temperature cycling, specific cellulosic inter‐ and intramolecular hydrogen‐bonds are broken as polymorphic conversion proceeds sequentially from the polymorph I to III, and finally at total solvation to amorphous. This proceeds correspondingly via transformation of the polymorph conformations of CH2OH from trans‐gauche, “tg,” to gauche‐trans, “gt,” to gauche‐gauche, “gg.” © 1994 John Wiley & Sons, Inc.
Cellulose crosslinking is a very important textile chemical process, and is the basis for a vast array of durable press and crease-resistant finished textile products. Formaldehydecontaining N-methylol crosslinkers give fabrics desirable properties of mechanical stability (e.g., crease resistance, anti-curl, shrinkage resistance, durable-press), but also impart a loss of strength and the potential to release formaldehyde, a known human carcinogen. Other systems, such as polycarboxylic acids, have been tested with varying degrees of success. We have developed methods of forming ionic crosslinks that provide outstanding performance in crease angle recovery while completely retaining the strength of treated goods, without the potential to release any reactive materials of low molecular weight, such as formaldehyde. Our work is based on the reactions of cellulose with materials that impart an ionic character to the cellulose; e.g., chloroacetic acid for negative charges or 3-chloro-2-hydroxypropyl trimethyl ammonium chloride for positive charges. These reactions produce ionic celluloses that can then absorb a polyionic material of opposite charge to form crosslinks. Cellulose treated with cationized chitosan after carboxymethylation showed significant increases in crease recovery angles without a loss of strength.
A review of plasma treatments of textiles is presented. The utility of plasma technology in processing textiles and the corresponding changes brought about in textile properties are discussed. The initiative, funded by the National Textile Center, and its progress to date is presented. This program features the use of enhanced high density plasmas for depositing films, removing surface matter, and altering surface properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.