SUMMARYThis paper presents the results of tests performed on a variety of electrothermal microactuators and arrays of these actuators recently fabricated in the four-level planarized polycrystalline silicon (polysilicon) SUMMiT process at the U. S. Department of Energy's Sandia National Laboratories [l]. These results are intended to aid designers of thermally actuated mechanisms, and will apply to similar actuators made in other polysilicon MEMS processes. The measurements include force and deflection versus input power, maximum operating frequency, effects of long term operation, and ideal actuator and array geometries for different design criteria. A typical application in a stepper motor is shown to illustrate the utility of these actuators and arrays.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.