In this paper some innovative aspects of the mathematical modelling of classic epidemiology problems for the study of models related to the COVID-19 pandemic dynamics are presented. In addition, they are compared to real-world data using numerical methods in order to approximate the solutions. One of these models includes a non-transmitting compartment and another one, a delay-differential equation in the SIR-type method. Finally, a comparative discussion of the results is also presented.
Presentamos un modelo matemático tipo SEI que considera la transmisión de una enferme- dad por los infectados y los expuestos o latentes. Adicional a esto consideramos que existe un proceso de inmigración en la población. Mostra- mos que existe un equilibrio endémico y que no existe equilibrio libre de la infección por efecto de la inmigración. Para el equilibrio endémico mostramos la estabilidad global sin restricción en ninguno de los parámetros de existencia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.