The mammalian mRNA for selenium-dependent glutathione peroxidase 1 (Se-GPx1) contains a UGA codon that is recognized as a codon for the nonstandard amino acid selenocysteine (Sec). Inadequate concentrations of selenium (Se) result in a decrease in Se-GPx1 mRNA abundance by an uncharacterized mechanism that may be dependent on translation, independent of translation, or both. In this study, we have begun to elucidate this mechanism. We demonstrate using hepatocytes from rats fed either a Se-supplemented or Se-deficient diet for 9 to 13 weeks that Se deprivation results in an ϳ50-fold reduction in Se-GPx1 activity and an ϳ20-fold reduction in Se-GPx1 mRNA abundance. Reverse transcription-PCR analyses of nuclear and cytoplasmic fractions revealed that Se deprivation has no effect on the levels of either nuclear pre-mRNA or nuclear mRNA but reduces the level of cytoplasmic mRNA. The regulation of Se-GPx1 gene expression by Se was recapitulated in transient transfections of NIH 3T3 cells, and experiments were extended to examine the consequences of converting the Sec codon (TGA) to either a termination codon (TAA) or a cysteine codon (TGC). Regardless of the type of codon, an alteration in the Se concentration was of no consequence to the ratio of nuclear Se-GPx1 mRNA to nuclear Se-GPx1 pre-mRNA. The ratio of cytoplasmic Se-GPx1 mRNA to nuclear Se-GPx1 mRNA from the wild-type (TGA-containing) allele was reduced twofold when cells were deprived of Se for 48 h after transfection, which has been shown to be the extent of the reduction for the endogenous Se-GPx1 mRNA of cultured cells incubated as long as 20 days in Se-deficient medium. In contrast to the TGA allele, Se had no effect on expression of either the TAA allele or the TGC allele. Under Se-deficient conditions, the TAA and TGC alleles generated, respectively, 1.7-fold-less and 3-fold-more cytoplasmic Se-GPx1 mRNA relative to the amount of nuclear Se-GPx1 mRNA than the TGA allele. These results indicate that (i) under conditions of Se deprivation, the Sec codon reduces the abundance of cytoplasmic Se-GPx1 mRNA by a translation-dependent mechanism and (ii) there is no additional mechanism by which Se regulates Se-GPx1 mRNA production. These data suggest that the inefficient incorporation of Sec at the UGA codon during mRNA translation augments the nonsense-codon-mediated decay of cytoplasmic Se-GPx1 mRNA.Many organisms, including bacteria, Saccharomyces cerevisiae, and vertebrates, appear to have established mechanisms that eliminate the production of mRNAs that prematurely terminate translation because of a frameshift or nonsense mutation (reviewed in references 32, 33, 37, and 42). Therefore, the discovery of mRNAs in both bacterial and mammalian cells in which one or more UGA codons are purposefully used as selenocysteine (Sec) codons rather than as nonsense codons (reviewed in references 10 and 30) raises the interesting issue of whether these mRNAs are reduced in abundance when the UGA codon is recognized as nonsense.Cues from (i) biochemical and genetic stu...
. Recent studies have suggested that the enzyme, which was shown nearly 50 years ago to require iron (1, 2), contains a coupled dinuclear nonheme iron cluster (5), making MIOX the most recent addition to the nonheme diiron oxygenase͞oxidase family that also includes bacterial hydrocarbon hydroxylases (e.g., soluble methane monooxygenase), plant fatty acyl desaturases (e.g., stearoyl acyl carrier protein ⌬ 9 desaturase), and protein R2 of class I ribonucleotide reductase (R2) (6-10). Mössbauer and EPR spectra showed that treatment of recombinant Mus musculus MIOX isolated in its iron-free form from Escherichia coli with Fe(II) and O 2 leads to formation of an antiferromagnetically coupled diiron cluster in either the II͞III or III͞III oxidation state, depending on the O 2 ͞MIOX ratio and the presence or absence of a reductant (ascorbate or cysteine). Binding of MI was shown to perturb the spectra of both oxidation states in a manner consistent with direct coordination of the substrate to the cluster (5).All nonheme diiron oxygenases and oxidases characterized before MIOX activate O 2 with the II͞II oxidation state of the cofactor (11,12). For several of the reactions, (peroxo)diiron(III͞III) intermediates have been demonstrated. These complexes are generally proposed to undergo O-O-bond cleavage to generate high-valent iron complexes that cleave strong C-H or O-H bonds of their oxidation targets (8,(11)(12)(13)(14). Indeed, the diiron(III͞IV) cluster, X (15, 16), and the diiron(IV͞IV) cluster, Q (8, 13, 17), have been directly characterized in the R2 and soluble methane monooxygenase reactions, respectively. In each of the previously characterized diiron-oxygenase͞oxidase reactions, a diiron(III͞III) ''product'' state of the cluster is generated at the end of the oxidation sequence. Subsequent events require reduction of the cluster back to the diiron(II͞II) state by additional proteins, with electrons provided ultimately by NAD(P)H. This redox cycling of the cofactor and provision of two electrons by the nicotinamide ''cosubstrate'' ensure that at most two electrons can be extracted from the substrate. The MIOX reaction, a four-electron oxidation, would seem to require a different mechanism.Indeed, a recent study concluded that the mixed-valent, II͞III state of the cofactor, rather than the conventional II͞II state, activates O 2 for DG production in the MIOX reaction (4). Single-turnover experiments showed that the fully reduced enzyme (MIOX II/II ) reacts with limiting O 2 in the presence of saturating MI to generate the mixed-valent enzyme as a stable product with unit stoichiometry and with only a low yield of DG. By contrast, the
Selenium is an essential micronutrient that suppresses the redox-sensitive transcription factor NF-B-dependent proinflammatory gene expression. To understand the molecular mechanisms underlying the anti-inflammatory property of selenium, we examined the activity of a key kinase of the NF-B cascade, IB-kinase  (IKK) subunit, as a function of cellular selenium status in murine primary bone marrow-derived macrophages and RAW264.7 macrophage-like cell line. In vitro kinase assays revealed that selenium supplementation decreased the activity of IKK in lipopolysaccharide (LPS)-treated macrophages. Stimulation by LPS of seleniumsupplemented macrophages resulted in a time-dependent increase in 15-deoxy-⌬ 12,14 -prostaglandin J 2 (15d-PGJ 2 ) formation, an endogenous inhibitor of IKK activity. Further analysis revealed that inhibition of IKK activity in seleniumsupplemented cells correlated with the Michael addition product of 15d-PGJ 2 with Cys-179 of IKK, while the formation of such an adduct was significantly decreased in the selenium-deficient macrophages. In addition, anti-inflammatory activities of selenium were also mediated by the 15d-PGJ 2 -dependent activation of the peroxisome proliferator-activated nuclear receptor-␥ in macrophages. Experiments using specific cyclooxygenase (COX) inhibitors and genetic knockdown approaches indicated that COX-1, and not the COX-2 pathway, was responsible for the increased synthesis of 15d-PGJ 2 in selenium-supplemented macrophages. Taken together, our results suggest that selenium supplementation increases the production of 15d-PGJ 2 as an adaptive response to protect cells against oxidative stress-induced pro-inflammatory gene expression. More specifically, modification of protein thiols by 15d-PGJ 2 represents a previously undescribed code for redox regulation of gene expression by selenium.
myo-Inositol oxygenase (MIOX) uses iron as its cofactor and dioxygen as its cosubstrate to effect the unique, ring-cleaving, four-electron oxidation of its cyclohexan-(1,2,3,4,5,6-hexa)-ol substrate to d-glucuronate. The nature of the iron cofactor and its interaction with the substrate, myo-inositol (MI), have been probed by electron paramagnetic resonance (EPR) and Mössbauer spectroscopies. The data demonstrate the formation of an antiferromagnetically coupled, high-spin diiron(III/III) cluster upon treatment of solutions of Fe(II) and MIOX with excess O(2) or H(2)O(2) and the formation of an antiferromagnetically coupled, valence-localized, high-spin diiron(II/III) cluster upon treatment with either limiting O(2) or excess O(2) in the presence of a mild reductant (e.g., ascorbate). Marked changes to the spectra of both redox forms upon addition of MI and analogy to changes induced by binding of phosphate to the diiron(II/III) cluster of the protein phosphatase, uteroferrin, suggest that MI coordinates directly to the diiron cluster, most likely in a bridging mode. The addition of MIOX to the growing family of non-heme diiron oxygenases expands the catalytic range of the family beyond the two-electron oxidation (hydroxylation and dehydrogenation) reactions catalyzed by its more extensively studied members such as methane monooxygenase and stearoyl acyl carrier protein Delta(9)-desaturase.
Selenium (Se) is an important element required for the optimal functioning of the immune system. Particularly in macrophages, which play a pivotal role in immune regulation, Se acts as a major antioxidant in the form of selenoproteins to mitigate the cytotoxic effects of reactive oxygen species. Here we describe the role of Se as an anti-inflammatory agent and its effect on the macrophage signal transduction pathways elicited by bacterial endotoxin, LPS. Our studies demonstrate that supplementation of Se to macrophages (Se-deficient) leads to a significant decrease in the LPS-induced expression of two important pro-inflammatory genes, cyclooxygenase-2 (COX-2) and tumor necrosis factor-alpha (TNF-alpha) via the inhibition of MAP kinase pathways. Furthermore, Se-deficiency in mice exacerbated the LPS-mediated infiltration of macrophages into the lungs suggesting that Se status is a crucial host factor that regulates inflammation. In summary, our results indicate that Se plays an important role as an anti-inflammatory agent by tightly regulating the expression of pro-inflammatory genes in immune cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.