Masonry infill ͑MI͒ walls are remarkable in increasing the initial stiffness of reinforced concrete ͑RC͒ frames, and being the stiffer component, attract most of the lateral seismic shear forces on buildings, thereby reducing the demand on the RC frame members. However, behavior of MI is difficult to predict because of significant variations in material properties and because of failure modes that are brittle in nature. As a result, MI walls have often been treated as nonstructural elements in buildings, and their effects are not included in the analysis and design procedure. However, experience shows that MI may have significant positive or negative effects on the global behavior of buildings and, therefore, should be addressed appropriately. Various national codes differ greatly in the manner effects of MI are to be considered in the design process from aseismic performance point of view. This paper reviews and compares analysis and design provisions related to MI-RC frames in seismic design codes of 16 countries and identifies important issues that should be addressed by a typical model code.
Some traditional designs of masonry structures have shown acceptable structural performance during past earthquakes. In these structures, a grid of horizontal, vertical, and/or diagonal elements divide a large wall into smaller wall areas and provide confinement to masonry panels. In addition, grid elements provide a definite shearing plane along which masonry blocks can slide adding to deformability and energy-dissipation capacity. Inclined elements significantly add to lateral stiffness and strength depending on whether they can develop a complete truss action for lateral loads. Cyclic tests were conducted on five half-scaled wall specimens with different sub-paneling schemes using RC precast grid elements. Experimental results and finite element studies were used to develop simplified predictive relations for strength and stiffness response based on a confinement factor representing the grid element density. These relations can be used to configure the grid elements for desired performance levels with additional inputs about the global behavior.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.