Four lactating Holstein cows fitted with ruminal and duodenal cannulas were used in a 4 x 4 Latin square design to determine the effects of feeding micronized and extruded flaxseed on milk composition and blood profile in late lactation. Four diets were formulated: a control (C) diet with no flaxseed, a raw flaxseed (RF) diet, a micronized flaxseed (MF) diet, and an extruded flaxseed (EF) diet. Flaxseed diets contained 12.6% flax-seed (dry matter basis). Experimental periods consisted of 21 d of diet adaptation and 7 d of data collection. Feeding flaxseed reduced milk yield and energy-corrected milk by 1.8 and 1.4 kg/d, respectively. Yields of milk protein and casein were also lower for cows fed flaxseed diets than for those fed the C diet. Milk yield (1.6 kg/d) and milk fat percentage (0.4 percentage unit) were lower for cows fed EF than those fed MF. Plasma cholesterol and nonesterified fatty acid concentrations were higher for cows fed flaxseed diets relative to those fed the C diet. Flaxseed supplementation decreased plasma concentrations of medium-chain (MCFA) and saturated (SFA) fatty acids and increased concentrations of long-chain (LCFA) and monounsaturated fatty acids. Feeding flaxseed reduced the concentrations of short-chain fatty acids (SCFA), MCFA, and SFA in milk fat. Consequently, concentrations of LCFA and unsaturated fatty acids were higher for cows fed flaxseed diets than for those fed the C diet. Flaxseed supplementation increased average concentrations of C(18:3) and conjugated linoleic acid by 152 and 68%, respectively. Micronization increased C(18:3) level, and extrusion reduced concentrations of SCFA and SFA in milk. It was concluded that feeding raw or heated flaxseed to dairy cows alters blood and milk fatty acid composition. Feeding extruded flaxseed relative to raw or micronized flaxseed had negative effects on milk yield and milk composition.
Four lactating Holstein cows with ruminal and duo-denal cannulas were used in a 4 x 4 latin square design to determine the effects of feeding heat-treated flaxseed on ruminal fermentation and site and extent of nutrient utilization. Four diets were formulated: a control diet with no flaxseed, a raw flaxseed diet (RF), a micronized flaxseed diet (MF), and an extruded flaxseed diet (EF). Flaxseed diets contained 12.6% flaxseed (dry matter [DM] basis). Ruminal pH, NH3 N, and total concentration of volatile fatty acids were not affected by dietary treatments. However, feeding flaxseed decreased the molar proportion of acetate and increased that of propionate. Flaxseed supplementation had no effect on ruminal digestion of DM, organic matter (OM), neutral detergent fiber (NDF), crude protein (CP), fatty acids (FA), and gross energy. However, ruminal digestion of acid detergent fiber (ADF) was lower for cows fed the flaxseed diets than for cows fed the control diet. Feeding flaxseed tended to increase post-ruminal and total tract digestibilities of DM, OM, NDF, and gross energy. Feeding heat-treated flaxseed diets relative to RF had no effect on ruminal, post-ruminal, and total tract nutrient digestibilities. Cows fed EF had higher ruminal and lower post-ruminal digestibilities of DM, OM, ADF, CP, and FA than cows fed MF. However, total tract digestibilities were similar for the 2 heat treatments. It was concluded that flaxseed supplementation improved total tract nutrient utilization with no adverse effects on ruminal fermentation. Extrusion failed to protect flaxseed from ruminal digestion. However, micronization can be used to increase the ruminal undegraded protein value of flaxseed.
Dietary vegetable oils and fish oils rich in PUFA (polyunsaturated fatty acids) exert hypocholesterolaemic and hypotriglyceridaemic effects in rodents. The plasma cholesterol-lowering properties of PUFA are due partly to a diminution of cholesterol synthesis and of the activity of the rate-limiting enzyme HMG-CoA reductase (3-hydroxy-3-methylglutaryl-CoA reductase). To better understand the mechanisms involved, we examined how tuna fish oil and individual n-3 and n-6 PUFA affect the expression of hepatic FPP synthase (farnesyl diphosphate synthase), a SREBP (sterol regulatory element-binding protein) target enzyme that is subject to negative-feedback regulation by sterols, in co-ordination with HMG-CoA reductase. Feeding mice on a tuna fish oil diet for 2 weeks decreased serum cholesterol and triacylglycerol levels, by 50% and 60% respectively. Hepatic levels of FPP synthase and HMG-CoA reductase mRNAs were also decreased, by 70% and 40% respectively. Individual n-3 and n-6 PUFA lowered FPP synthase and HMG-CoA reductase mRNA levels in H4IIEC3 rat hepatoma cells to a greater extent than did stearate and oleate, with the largest inhibitory effects occurring with arachidonate, EPA (eicosapentaenoic acid) and DHA (docosahexaenoic acid). We observed a similar inhibitory effect on protein levels of FPP synthase. The suppressive effect of PUFA on the FPP synthase mRNA level was not due to a decrease in mRNA stability, but to transcription inhibition. Moreover, a lower nuclear availability of both SREBP-1 and SREBP-2 mature forms was observed in HepG2 human hepatoblastoma cells treated with arachidonate, EPA or DHA. Taken together, these data suggest that PUFA can down-regulate hepatic cholesterol synthesis through inhibition of HMG-CoA reductase and FPP synthase, at least in part through impairment of the SREBP pathway.
BackgroundIn recent years, the phenotypes of leukodystrophies linked to mutations in the eukaryotic initiation factor 2B genes have been extended, classically called CACH/VWM (Childhood ataxia with cntral hypomyélination/vanishing white matter disorder). The large clinical spectrum observed from the more severe antenatal forms responsible for fetal death to milder adult forms with an onset after 16 years old and restricted to slow cognitive impairment have lead to the concept of eIF2B-related disorders. The typical MRI pattern with a diffuse CSF-like aspect of the cerebral white matter can lack particularly in the adult forms whereas an increasing number of patients with clinical and MRI criteria for CACH/VWM disease but without eIF2B mutations are found. Then we propose the use of biochemical markers to help in this difficult diagnosis. The biochemical diagnosis of eIF2B-related disorder is difficult as no marker, except the recently described asialotransferrin/transferrin ratio measured in cerebrospinal fluid, has been proposed and validated until now. Decreased eIF2B GEF activity has been previously reported in lymphoblastoid cell lines from 30 eIF2B-mutated patients. Our objective was to evaluate further the utility of this marker and to validate eIF2B GEF activity in a larger cohort as a specific diagnostic test for eIF2B-related disorders.Methodology/Principal FindingsWe performed eIF2B GEF activity assays in cells from 63 patients presenting with different clinical forms and eIF2B mutations in comparison to controls but also to patients with defined leukodystrophies or CACH/VWM-like diseases without eIF2B mutations. We found a significant decrease of GEF activity in cells from eIF2B-mutated patients with 100% specificity and 89% sensitivity when the activity threshold was set at ≤77.5%.ConclusionThese results validate the measurement of eIF2B GEF activity in patients' transformed-lymphocytes as an important tool for the diagnosis of eIF2B-related disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.