This paper provides a historical review of the literature on the effects of radiation-induced displacement damage in semiconductor materials and devices. Emphasis is placed on effects in technologically important bulk silicon and silicon devices. The primary goals are to provide a guide to displacement damage literature, to offer critical comments regarding that literature in an attempt to identify key findings, to describe how the understanding of displacement damage mechanisms and effects has evolved, and to note current trends. Selected tutorial elements are included as an aid to presenting the review information more clearly and to provide a frame of reference for the terminology used. The primary approach employed is to present information qualitatively while leaving quantitative details to the cited references. A bibliography of key displacement-damage information sources is also provided.
We describe how the James Webb Space Telescope (JWST) Near-Infrared Spectrograph's (NIRSpec's) detectors will be read out, and present a model of how noise scales with the number of multiple non-destructive reads samplingup-the-ramp. We believe that this noise model, which is validated using real and simulated test data, is applicable to most astronomical near-infrared instruments. We describe some non-ideal behaviors that have been observed in engineering grade NIRSpec detectors, and demonstrate that they are unlikely to affect NIRSpec sensitivity, operations, or calibration. These include a HAWAII-2RG reset anomaly and random telegraph noise (RTN). Using real test data, we show that the reset anomaly is: (1) very nearly noiseless and (2) can be easily calibrated out. Likewise, we show that large-amplitude RTN affects only a small and fixed population of pixels. It can therefore be tracked using standard pixel operability maps.
Photonic imagers are being increasingly used in space systems, where they are exposed to the space radiation environment. Unique properties of these devices require special considerations for radiation effects. This paper summarizes the evolution of radiation effects understanding in infrared detector technology, charge coupled devices, and active pixel sensors. The paper provides a discussion of key radiation effects developments and a view of the future of the technologies from a radiation effects perspective.
Individual ionizing heavy ion events are shown to cause two or more adjacent memory cells to change logic states in a high density CMOS SRAM. A majority of the upsets produced by normally incident heavy ions are due to singleparticle events that causes a single cell to upset. However, for grazing angles a majority of the upsets produced by heavy-ion irradiation are due to single-particle events that cause two or more cells to change logic states.Experimental evidence of a single proton-induced spallation reaction that causes two adjacent memory cells to change logic states is presented. Results from a dual volume Monte-Carlo simulation code for proton-induced single-event multiple upsets are within a factor of three of experimental data for protons at normal incidence and 70 degrees.
We present data on recent optocoupler in-flight anomalies and the subsequent ground test irradiation performed. Discussions of the single event mechanisms involved, transient filtering analysis, and design implications are included. Proton-induced transients were observed on higher speed optocouplers with a unique dependence on the incidence particle angle. The results indicate that both direct ionization and nuclear reaction-related mechanisms are responsible for the single events observed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.