BCG, a live attenuated tubercle bacillus, is the most widely used vaccine in the world and is also a useful vaccine vehicle for delivering protective antigens of multiple pathogens. Extrachromosomal and integrative expression vectors carrying the regulatory sequences for major BCG heat-shock proteins have been developed to allow expression of foreign antigens in BCG. These recombinant BCG strains can elicit long-lasting humoral and cellular immune responses to foreign antigens in mice.
The live attenuated bacillus Calmette-Guérin (BCG) vaccine for the prevention of disease associated with Mycobacterium tuberculosis was derived from the closely related virulent tubercle bacillus, Mycobacterium bovis. Although the BCG vaccine has been one of the most widely used vaccines in the world for over 40 years, the genetic basis of BCG's attenuation has never been elucidated. We employed subtractive genomic hybridization to identify genetic differences between virulent M. bovis and M. tuberculosis and avirulent BCG. Three distinct genomic regions of difference (designated RD1 to RD3) were found to be deleted from BCG, and the precise junctions and DNA sequence of each deletion were determined. RD3, a 9.3-kb genomic segment present in virulent laboratory strains of M. bovis and M. tuberculosis, was absent from BCG and 84% of virulent clinical isolates. RD2, a 10.7-kb DNA segment containing a novel repetitive element and the previously identified mpt-64 gene, was conserved in all virulent laboratory and clinical tubercle bacilli tested and was deleted only from substrains derived from the original BCG Pasteur strain after 1925. Thus, the RD2 deletion occurred after the original derivation of BCG. RD1, a 9.5-kb DNA segment found to be deleted from all BCG substrains, was conserved in all virulent laboratory and clinical isolates of M. bovis and M. tuberculosis tested. The reintroduction of RD1 into BCG repressed the expression of at least 10 proteins and resulted in a protein expression profile almost identical to that of virulent M. bovis and M. tuberculosis, as determined by twodimensional gel electrophoresis. These data indicate a role for RD1 in the regulation of multiple genetic loci, suggesting that the loss of virulence by BCG is due to a regulatory mutation. These findings may be applicable to the rational design of a new attenuated tuberculosis vaccine and the development of new diagnostic tests to distinguish BCG vaccination from tuberculosis infection.Mycobacterium tuberculosis is the most prolific and poorly understood pathogen of humans. It is estimated that one-third of the world's population is infected with M. tuberculosis and that each year 3 million people die of this disease (28). In an effort to control the threat of tuberculosis, attenuated bacillus Calmette-Guérin (BCG) has been used as a live attenuated vaccine. BCG is an attenuated derivative of Mycobacterium bovis, a virulent tubercle bacillus very closely related to M. tuberculosis (13,22). BCG has been used for over 5 decades to immunize over 3 billion people in immunization programs against tuberculosis. While its protective efficacy against tuberculosis has been highly variable, by recent meta-analysis estimates, on average the BCG vaccine reduced the overall risks of tuberculosis by 50% and serious forms of this disease by 70 to 80% (7). As a safe, inexpensive vaccine with potent nonspecific immunostimulatory properties, BCG has more recently been proposed and developed as a live recombinant vehicle for new multivalent vaccines...
Mutations that eliminate KatG catalase-peroxidase activity prevent activation of isoniazid and are a major mechanism of resistance to this principal drug for the treatment of Mycobacterium tuberculosis infections. However, the loss of KatG activity in clinical isolates seemed paradoxical because KatG is considered an important factor for the survival of the organism. Expression of either KatG or the recently identified alkyl hydroperoxidase AhpC was sufficient to protect bacilli against the toxic effects of organic peroxides. To survive during infection, isoniazid-resistant KatG mutants have apparently compensated for the loss of KatG catalase-peroxidase activity by a second mutation, resulting in hyperexpression of AhpC.
Widespread drug resistance due to empiric use of broad-spectrum antibiotics has stimulated development of bacteria-specific strategies for prophylaxis and therapy based on modern monoclonal antibody (mAb) technologies. However, single-mechanism mAb approaches have not provided adequate protective activity in the clinic. We constructed multifunctional bispecific antibodies, each conferring three mechanisms of action against the bacterial pathogen Pseudomonas aeruginosa by targeting the serotype-independent type III secretion system (injectisome) virulence factor PcrV and persistence factor Psl exopolysaccharide. A new bispecific antibody platform, BiS4, exhibited superior synergistic protection against P. aeruginosa-induced murine pneumonia compared to parent mAb combinations or other available bispecific antibody structures. BiS4αPa was protective in several mouse infection models against disparate P. aeruginosa strains and unexpectedly further synergized with multiple antibiotic classes even against drug-resistant clinical isolates. In addition to resulting in a multimechanistic clinical candidate (MEDI3902) for the prevention or treatment of P. aeruginosa infections, these antibody studies suggest that multifunctional antibody approaches may be a promising platform for targeting other antibiotic-resistant bacterial pathogens.
The current vaccine against tuberculosis, Mycobacterium bovis strain bacille Calmette-Guerin (BCG), offers potential advantages as a live, innately immunogenic vaccine vehicle for the expression and delivery of protective recombinant antigens (Stover, C.K., V.F. de la Cruz, T.R. Fuerst, J.E. Burlein, L.A. Benson, L.T. Bennett, G.P. Bansal, J.F. Young, M.H. Lee, G.F. Hatfull et al. 1991. Nature [Lond]. 351:456; Jacobs, W.R., Jr., S.B. Snapper, L. Lugosi and B.R. Bloom. 1990. Curr. Top. Microbiol. Immunol. 155:153; Jacobs, W.R., M. Tuckman, and B.R. Bloom. 1987. Nature [Lond.]. 327:532); but as an attenuated intracellular bacterium residing in macrophages, BCG would seem to be best suited for eliciting cellular responses and not humoral responses. Since bacterial lipoproteins are often among the most immunogenic of bacterial antigens, we tested whether BCG expression of a target antigen as a membrane-associated lipoprotein could enhance the potential for a recombinant BCG vaccine to elicit high-titered protective antibody responses to target antigens. Immunization of mice with recombinant BCG vaccines expressing the outer surface protein A (OspA) antigen of Borrelia burgdorferi as a membrane-associated lipoprotein resulted in protective antibody responses that were 100-1,000-fold higher than responses elicited by immunization with recombinant BCG expressing OspA cytoplasmically or as a secreted fusion protein. Furthermore, these improved antibody responses were observed in heterogeneous mouse strains that vary in their immune responsiveness to OspA and sensitivity to BCG growth. Thus, expression of protective antigens as chimeric membrane-associated lipoproteins on recombinant BCG may result in the generation of new candidate vaccines against Lyme borreliosis and other human or veterinary diseases where humoral immunity is the protective response.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.