Context. Active regions are the most prominent manifestations of solar magnetic fields; their generation and dissipation are fundamental problems in solar physics. Light bridges are commonly present during sunspot decay, but a comprehensive picture of their role in the removal of photospheric magnetic field is still missing. Aims. We study the three dimensional configuration of a sunspot and in particular its light bridge during one of the last stages of its decay. Methods. We present the magnetic and thermodynamical stratification inferred from full Stokes inversions of the photospheric Si i 10827 Å and Ca i 10839 Å lines obtained with the GREGOR Infrared Spectrograph of the GREGOR telescope at Observatorio del Teide, Tenerife, Spain. The analysis is complemented by a study of continuum images covering the disk passage of the active region, which are provided by the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory. Results. The sunspot shows a light bridge with penumbral continuum intensity that separates the central umbra from a smaller umbra. We find that in this region the magnetic field lines form a canopy with lower magnetic field strength in the inner part. The photospheric light bridge is dominated by gas pressure (high-β), as opposed to the surrounding umbra where the magnetic pressure is higher. A convective flow is observed in the light bridge. This flow is able to bend the magnetic field lines and to produce field reversals. The field lines close above the light bridge and become as vertical and strong as in the surrounding umbra. We conclude that it develops because of two highly magnetized regions which come closer during the sunspot evolution.
Aims. There is an ongoing debate whether the solar activity cycle is overlaid with a long-term decline that may lead to another grand minimum in the near future. We used the size, intensity, and magnetic field strength of sunspot umbrae to compare the present cycle 24 with the previous one. Methods. We used data of the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory and selected all sunspots between May 2010 and October 2012, using one image per day. We created two subsets of this dataset with a manual tracking algorithm, both without duplication. One contains each sunspot (910 umbrae within 488 spots) and was used to analyze the distribution of umbral areas, selected with an automated thresholding method. The other subset contains 205 fully evolved sunspots. We estimated their magnetic field and the total magnetic flux and discuss the relations between umbral size, minimum continuum intensity, maximum field strength, and total magnetic flux. Results. We find non-linear relations between umbral minimum intensity and size and between maximum magnetic field strength and size. The field strength scales linearly with the intensity and the umbral size scales roughly linearly with the total magnetic flux, while the size and field strength level off with stronger flux. When separated into hemispheres and averaged temporally, the southern umbrae show a temporal increase in size and the northern umbrae remain constant. We detected no temporal variation in the umbral mean intensity. The probability density function of the umbral area in the ascending phase of the current solar cycle is similar to that of the last solar cycle. Conclusions. From our investigation of umbral area, magnetic field, magnetic flux, and umbral intensity of the sunspots of the rising phase of cycle 24, we do not find a significant difference to the previous cycle, and hence no indication for a long-term decline of solar activity.
Context. Some models for the topology of the magnetic field in sunspot penumbrae predict the existence of field-free or dynamically weak-field regions in the deep Photosphere. Aims. To confirm or rule out the existence of weak-field regions in the deepest photospheric layers of the penumbra. Methods. The magnetic field at log τ5 = 0 is investigated by means of inversions of spectropolarimetric data of two different sunspots located very close to disk center with a spatial resolution of approximately 0.4-0.45 ′′ . The data have been recorded using the GRIS instrument attached to the 1.5-meters GREGOR solar telescope at El Teide observatory. It includes three Fe i lines around 1565 nm, whose sensitivity to the magnetic field peaks at half a pressure-scale-height deeper than the sensitivity of the widely used Fe i spectral line pair at 630 nm. Prior to the inversion, the data is corrected for the effects of scattered light using a deconvolution method with several point spread functions. Results. At log τ5 = 0 we find no evidence for the existence of regions with dynamically weak (B < 500 Gauss) magnetic fields in sunspot penumbrae. This result is much more reliable than previous investigations done with Fe i lines at 630 nm. Moreover, the result is independent of the number of nodes employed in the inversion, and also independent of the point spread function used to deconvolve the data, and does not depend on the amount of straylight (i.e. wide-angle scattered light) considered.
Context. Investigations of the magnetism of the quiet Sun are hindered by extremely weak polarization signals in Fraunhofer spectral lines. Photon noise, straylight, and the systematically different sensitivity of the Zeeman effect to longitudinal and transversal magnetic fields result in controversial results in terms of the strength and angular distribution of the magnetic field vector. Aims. The information content of Stokes measurements close to the diffraction limit of the 1.5 m GREGOR telescope is analyzed. We took the effects of spatial straylight and photon noise into account. Methods. Highly sensitive full Stokes measurements of a quiet-Sun region at disk center in the deep photospheric Fe i lines in the 1.56 µm region were obtained with the infrared spectropolarimeter GRIS at the GREGOR telescope. Noise statistics and Stokes V asymmetries were analyzed and compared to a similar data set of the Hinode spectropolarimeter (SOT/SP). Simple diagnostics based directly on the shape and strength of the profiles were applied to the GRIS data. We made use of the magnetic line ratio technique, which was tested against realistic magneto-hydrodynamic simulations (MURaM). Results. About 80% of the GRIS spectra of a very quiet solar region show polarimetric signals above a 3σ level. Area and amplitude asymmetries agree well with small-scale surface dynamo magnetohydrodynamic simulations. The magnetic line ratio analysis reveals ubiquitous magnetic regions in the ten to hundred Gauss range with some concentrations of kilo-Gauss fields. Conclusions. The GRIS spectropolarimetric data at a spatial resolution of ≈0. 4 are so far unique in the combination of high spatial resolution scans and high magnetic field sensitivity. Nevertheless, the unavoidable effect of spatial straylight and the resulting dilution of the weak Stokes profiles means that inversion techniques still bear a high risk of misinterpretating the data.
Context. A significant part of the penumbral magnetic field returns below the surface in the very deep photosphere. For lines in the visible, a large portion of this return field can only be detected indirectly by studying its imprints on strongly asymmetric and three-lobed Stokes V profiles. Infrared lines probe a narrow layer in the very deep photosphere, providing the possibility of directly measuring the orientation of magnetic fields close to the solar surface. Aims. We study the topology of the penumbral magnetic field in the lower photosphere, focusing on regions where it returns below the surface. Methods. We analyzed 71 spectropolarimetric datasets from Hinode and from the GREGOR infrared spectrograph. We inferred the quality and polarimetric accuracy of the infrared data after applying several reduction steps. Techniques of spectral inversion and forward synthesis were used to test the detection algorithm. We compared the morphology and the fractional penumbral area covered by reversed-polarity and three-lobed Stokes V profiles for sunspots at disk center. We determined the amount of reversed-polarity and three-lobed Stokes V profiles in visible and infrared data of sunspots at various heliocentric angles. From the results, we computed center-to-limb variation curves, which were interpreted in the context of existing penumbral models. Results. Observations in visible and near-infrared spectral lines yield a significant difference in the penumbral area covered by magnetic fields of opposite polarity. In the infrared, the number of reversed-polarity Stokes V profiles is smaller by a factor of two than in the visible. For three-lobed Stokes V profiles the numbers differ by up to an order of magnitude.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.