A search for the decays of the Higgs and Z bosons to a ϕ meson and a photon is performed with a pp collision data sample corresponding to an integrated luminosity of 2.7 fb^{-1} collected at sqrt[s]=13 TeV with the ATLAS detector at the LHC. No significant excess of events is observed above the background, and 95% confidence level upper limits on the branching fractions of the Higgs and Z boson decays to ϕγ of 1.4×10^{-3} and 8.3×10^{-6}, respectively, are obtained.
Insulating materials usually suffer charging effects when irradiated by charged particles. In this paper, we present a Monte Carlo study on the charging effect caused by electron beam irradiation for sample structures with any complex geometry. When transporting in an insulating solid, electrons encounter elastic and inelastic scattering events; the Mott cross section and a Lorentz-type dielectric function are respectively employed to describe such scatterings. In addition, the band gap and the electron-long optical phonon interaction are taken into account. The electronic excitation in inelastic scattering causes generation of electron-hole pairs; these negative and positive charges establish an inner electric field, which in turn induces the drift of charges to be trapped by impurities, defects, vacancies etc in the solid, where the distributions of trapping sites are assumed to have uniform density. Under charging conditions, the inner electric field distorts electron trajectories, and the surface electric potential dynamically alters secondary electron emission. We present, in this work, an iterative modeling method for a self-consistent calculation of electric potential; the method has advantages in treating any structure with arbitrary complex geometry, in comparison with the image charge method-which is limited to a quite simple boundary geometry. Our modeling is based on: the combination of the finite triangle mesh method for an arbitrary geometry construction; a self-consistent method for the spatial potential calculation; and a full dynamic description for the motion of deposited charges. Example calculations have been done to simulate secondary electron yield of SiO 2 for a semi-infinite solid, the charging for a heterostructure of SiO 2 film grown on an Au substrate, and SEM imaging of a SiO 2 line structure with rough surfaces and SiO 2 nanoparticles with irregular shapes. The simulations have explored interesting interlaced charge layer distribution underneath the nanoparticle surface and the mechanism by which it is produced.
We propose a large-area, cost-effective Muon Telescope Detector (MTD) at mid-rapidity for the Solenoidal Tracker at RHIC (STAR) and for the next generation of detectors at a possible electron-ion collider. We utilize large Multi-gap Resistive Plate Chambers with long readout strips (long-MRPC) in the detector design. The results from cosmic ray and beam tests show the intrinsic timing and spatial resolution for a long-MRPC are 60 − 70 ps and ∼ 1 cm, respectively. The performance of the prototype muon telescope detector at STAR indicates that muon identification at a transverse momentum of a few GeV/c can be achieved by combining information from track matching with the MTD, ionization energy loss in the Time Projection Chamber, and time-of-flight measurements. A primary muon over secondary muon ratio of better than 1/3 can be achieved. This provides a promising device for future quarkonium programs and primordial dilepton measurements at RHIC. Simulations of the muon efficiency, the signal-to-background ratio of J/ψ, the separation of Υ 1S from 2S+3S states, and the electron-muon correlation from charm pair production in the RHIC environment are presented.
The Breit-Wheeler process which produces matter and anti-matter from photon collisions is investigated experimentally through the observation of 6085 exclusive electron-positron pairs in ultraperipheral Au+Au collisions at √ s N N = 200 GeV. The measurements reveal a large fourth-order
Charged hadron identification in the Compressed Baryonic Matter experiment (CBM) is realized via the Time-of-Flight method [1]. For this purpose the CBM-ToF collaboration designed a Time-of-Flight wall composed of Multi-gap Resistive Plate Chambers (MRPCs). Due to the high interaction rate in CBM of 10 MHz the key challenge is the development of high rate MRPCs above 25 kHz/cm 2 which become possible after the development of low resistive glass with extremely good quality. In this article we present the actual conceptual design of the ToF-wall which is subdivided in three parts namely the outer wall, the inner wall and the forward zone that are discussed in detail. KEYWORDS: Particle identification methods; Detector design and construction technologies and materials; Resistive-plate chambers; Instrumentation and methods for time-of-flight (TOF) spectroscopy
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.