The potential of nontoxic recombinant B subunits of cholera toxin (rCtxB) and its close relative Escherichia coli heat-labile enterotoxin (rEtxB) to act as mucosal adjuvants for intranasal immunization with herpes simplex virus type 1 (HSV-1) glycoproteins was assessed. Doses of 10 g of rEtxB or above with 10 g of HSV-1 glycoproteins elicited high serum and mucosal anti-HSV-1 titers comparable with that obtained using CtxB (10 g) with a trace (0.5 g) of whole toxin (Ctx-CtxB). By contrast, doses of rCtxB up to 100 g elicited only meager anti-HSV-1 responses. As for Ctx-CtxB, rEtxB resulted in a Th2-biased immune response with high immunoglobulin G1 (IgG1)/IgG2a antibody ratios and production of interleukin 4 (IL-4) and IL-10 as well as gamma interferon by proliferating T cells. The protective efficacy of the immune response induced using rEtxB as an adjuvant was assessed following ocular challenge of immunized and mock-immunized mice. Epithelial disease was observed in both groups, but the immunized mice recovered by day 6 whereas mock-immunized mice developed more severe corneal disease leading to stromal keratitis. In addition, a significant reduction in the incidence of lid disease and zosteriform spread was observed in immunized animals and there was no encephalitis compared with 95% encephalitis in mock-immunized mice. The potential of such mucosal adjuvants for use in human vaccines against pathogens such as HSV-1 is discussed.
We demonstrate that the receptor binding moiety of Escherichia coli heat-labile enterotoxin (EtxB) can completely prevent autoimmune disease in a murine model of arthritis. Injection of male DBA͞1 mice at the base of the tail with type II collagen in the presence of complete Freund's adjuvant normally leads to arthritis, as evidenced by inf lammatory infiltration and swelling of the joints. A separate injection of EtxB at the same time as collagen challenge prevented leukocyte infiltration, synovial hyperplasia, and degeneration of the articular cartilage and reduced clinical symptoms of disease by 82%. The principle biological property of EtxB is its ability to bind to the ubiquitous cell surface receptor GM1 ganglioside, and to other galactose-containing glycolipids and galactoproteins. The importance of receptor interaction in mediating protection from arthritis was demonstrated by the failure of a non-receptor-binding mutant of EtxB to elicit any protective effect. Analysis of T cell responses to collagen, in cultures of draining lymph node cells, revealed that protection was associated with a marked increase in interleukin 4 production concomitant with a reduction in interferon ␥ levels. Furthermore, in protected mice there was a significant reduction in anti-collagen antibody levels as well as an increase in the IgG1͞IgG2a ratio. These observations show that protection is associated with a shift in the Th1͞Th2 balance as well as a general reduction in the extent of the anti-type II collagen immune response. This suggests that EtxB-receptor-mediated modulation of lymphocyte responses provides a means of preventing autoimmune disease.Autoimmune diseases remain a major health problem despite enormous efforts to understand the underlying causative mechanisms. The lack of clarity with regard to both the predisposing factors and the precise antigenic targets of the immune response have restricted the development of effective therapeutic approaches. However, recent evidence suggests that agents which modulate the nature of the immune response may be effective as a means of prophylaxis or treatment. We recently reported that the nontoxic B subunit of Escherichia coli heat-labile enterotoxin (EtxB) exerts profound modulatory effects on lymphocyte populations in vitro; notably it was shown to cause the polyclonal activation of B cells, to induce apoptosis in CD8 ϩ T cells, and to have a negligible direct effect on CD4 ϩ
The potential of therapeutic vaccination of animals latently infected with herpes simplex virus type 1 (HSV-1) to enhance protective immunity to the virus and thereby reduce the incidence and severity of recurrent ocular disease was assessed in a mouse model. Mice latently infected with HSV-1 were vaccinated intranasally with a mixture of HSV-1 glycoproteins and recombinant Escherichia coli heat-labile enterotoxin B subunit (rEtxB) as an adjuvant. The systemic immune response induced was characterized by high levels of virusspecific immunoglobulin G1 (IgG1) in serum and very low levels of IgG2a. Mucosal immunity was demonstrated by high levels of IgA in eye and vaginal secretions. Proliferating T cells from lymph nodes of vaccinated animals produced higher levels of interleukin-10 (IL-10) than were produced by such cells from mockvaccinated animals. This profile suggests that vaccination of latently infected mice modulates the Th1-dominated proinflammatory response usually induced upon infection. After reactivation of latent virus by UV irradiation, vaccinated mice showed reduced viral shedding in tears as well as a reduction in the incidence of recurrent herpetic corneal epithelial disease and stromal disease compared with mock-vaccinated mice. Moreover, vaccinated mice developing recurrent ocular disease showed less severe signs and a quicker recovery rate. Spread of virus to other areas close to the eye, such as the eyelid, was also significantly reduced. Encephalitis occurred in a small percentage (11%) of mock-vaccinated mice, but vaccinated animals were completely protected from such disease. The possible immune mechanisms involved in protection against recurrent ocular herpetic disease in therapeutically vaccinated animals are discussed.
The haemagglutinin (HA) gene from the equine influenza H3N8 isolate Suffolk/89 has been cloned by reverse transcription and polymerase chain reaction amplification. The nucleotide sequence of the HA gene was determined from two independently cloned copies of the gene and was found to be most closely related to recent American isolates supporting the idea that most isolates of equine H3N8 are evolving as a single lineage. When the predicted amino acid sequence of the Suffolk/89 HA was examined, changes had taken place in at least four of the major antigenic sites, A, B, C, and D when compared to the sequences of the isolates used in the current vaccines (Miami/63 and Fontainebleau/79). Surprisingly, when the Suffolk/89 isolate was tested in haemagglutination inhibition (HI) assays with a panel of six mouse monoclonal antibodies, no differences were observed between the Suffolk/89 and the Fontainebleau/79 isolates, suggesting that this panel of monoclonal antibodies may recognise a limited subset of the major antigenic sites. Three anti-HA horse heterohybridoma monoclonals were able to distinguish between the Suffolk/89 and Fontainebleau/79 viruses, demonstrating that the horse does recognise these isolates as being antigenically different. The results of the work suggest that the isolates used in current equine influenza vaccines may need updating.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.