Skin as an important site of drug application for both local and systemic effects. However in skin, the stratum corneum is the main barrier for drug penetration. Penetration enhancement technology is a challenging development that would increase the number of drugs available for transdermal administration. The permeation of drug through skin can be enhanced by both chemical penetration enhancement and physical methods. In this review, we have discussed the chemical penetration enhancement technology for transdermal drug delivery as well as the probable mechanisms of action.
Over the past few decades the mucoadhesive buccal drug delivery system has received a great deal of attention to develop mucoadhesive dosage forms to enable the prolonged retention at the site of action, providing a controlled release of drug for improved therapeutic outcome. Mucoadhesive drug delivery gives facility to include a permeation enhancer/enzyme inhibitor or pHmodifier in the formulation and versatility in designing as multidirectional or unidirectional release systems for local and systemic action. Local delivery to tissues of the oral cavity has a number of applications, including treatment of local conditions such as periodontal disease, bacterial and fungal infections, and aphthous stomatitis and vesiculo bullous diseases. For the treatment of chronic diseases, the mucoadhesive buccal drug delivery system allows easily accessibility and is generally well-accepted for administeringdrugs by systemic action.
Aceclofenac, a non-steroidal antiinflammatory drug, is used for posttraumatic pain and rheumatoid arthritis. Aceclofenac fast-dispersible tablets have been prepared by direct compression method. Effect of superdisintegrants (such as, croscarmellose sodium, sodium starch glycolate and crospovidone) on wetting time, disintegration time, drug content, in vitro release and stability parameters has been studied. Disintegration time and dissolution parameters (t50% and t80%) decreased with increase in the level of croscarmellose sodium. Where as, disintegration time and dissolution parameters increased with increase in the level of sodium starch glycolate in tablets. However, the disintegration time values did not reflect in the dissolution parameter values of crospovidone tablets and release was dependent on the aggregate size in the dissolution medium. Stability studies indicated that tablets containing superdisintegrants were sensitive to high humidity conditions. It is concluded that fast-dispersible aceclofenac tablets could be prepared by direct compression using superdisintegrants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.