Defining the intensity of the East Asian summer monsoon (EASM) has been extremely controversial. This paper elaborates on the meanings of 25 existing EASM indices in terms of two observed major modes of interannual variation in the precipitation and circulation anomalies for the 1979-2006 period. The existing indices can be classified into five categories: the east-west thermal contrast, north-south thermal contrast, shear vorticity of zonal winds, southwesterly monsoon, and South China Sea monsoon. The last four types of indices reflect various aspects of the leading mode of interannual variability of the EASM rainfall and circulations, which correspond to the decaying El Niño, while the first category reflects the second mode that corresponds to the developing El Niño.The authors recommend that the EASM strength can be represented by the principal component of the leading mode of the interannual variability, which provides a unified index for the majority of the existing indices. This new index is extremely robust, captures a large portion (50%) of the total variance of the precipitation and three-dimensional circulation, and has unique advantages over all the existing indices. The authors also recommend a simple index, the reversed Wang and Fan index, which is nearly identical to the leading principal component of the EASM and greatly facilitates real-time monitoring.The proposed index highlights the significance of the mei-yu/baiu/changma rainfall in gauging the strength of the EASM. The mei-yu, which is produced in the primary rain-bearing system, the East Asian (EA) subtropical front, better represents the variability of the EASM circulation system. This new index reverses the traditional Chinese meaning of a strong EASM, which corresponds to a deficient mei-yu that is associated with an abnormal northward extension of southerly over northern China. The new definition is consistent with the meaning used in other monsoon regions worldwide, where abundant rainfall within the major local rain-bearing monsoon system is considered to be a strong monsoon.
The interannual relationship between the East Asian summer monsoon and the tropical Pacific SSTs is studied using rainfall data in the Yangtze River Valley and the NCEP reanalysis for 1951-96. The datasets are also partitioned into two periods, 1951-77 and 1978-96, to study the interdecadal variations of this relationship.A wet summer monsoon is preceded by a warm equatorial eastern Pacific in the previous winter and followed by a cold equatorial eastern Pacific in the following fall. This relationship involves primarily the rainfall during the pre-Mei-yu/Mei-yu season (May-June) but not the post-Mei-yu season (July-August). In a wet monsoon year, the western North Pacific subtropical ridge is stronger as a result of positive feedback that involves the anomalous Hadley and Walker circulations, an atmospheric Rossby wave response to the western Pacific complementary cooling, and the evaporation-wind feedback. This ridge extends farther to the west from the previous winter to the following fall, resulting in an 850-hPa anomalous anticyclone near the southeast coast of China. This anticyclone 1) blocks the pre-Mei-yu and Mei-yu fronts from moving southward thereby extending the time that the fronts produce stationary rainfall; 2) enhances the pressure gradient to its northwest resulting in a more intense front; and 3) induces anomalous warming of the South China Sea surface through increased downwelling, which leads to a higher moisture supply to the rain area. A positive feedback from the strong monsoon rainfall also appears to occur, leading to an intensified anomalous anticyclone near the monsoon region. This SST-subtropical ridge-monsoon rainfall relationship is observed in both the interannual timescale within each interdecadal period and in the interdecadal scale.The SST anomalies (SSTAs) change sign in northern spring and resemble a tropospheric biennial oscillation (TBO) pattern during the first interdecadal period . In the second interdecadal period (1978-96) the sign change occurs in northern fall and the TBO pattern in the equatorial eastern Pacific SST is replaced by longer timescales. This interdecadal variation of the monsoon-SST relationship results from the interdecadal change of the background state of the coupled ocean-atmosphere system. This difference gives rise to the different degrees of importance of the feedback from the anomalous circulations near the monsoon region to the equatorial eastern Pacific.In a wet monsoon year, the anomalous easterly winds south of the monsoon-enhanced anomalous anticyclone start to propagate slowly eastward toward the eastern Pacific in May and June, apparently as a result of an atmosphere-ocean coupled wave motion. These anomalous easterlies carry with them a cooling effect on the ocean surface. In 1951-77 this effect is insignificant as the equatorial eastern Pacific SSTAs, already change from warm to cold in northern spring, probably as a result of negative feedback processes discussed in ENSO mechanisms. In 1978-96 the equatorial eastern Pacific has ...
The semiannual cycle is comparable in magnitude to the annual cycle over parts of the equatorial landmasses, but only a very small region reflects the twice-yearly crossing of the sun. Most of the semiannual cycle appears to be due to the influence of both the summer and the winter monsoon in the western part of the Maritime Continent where the annual cycle maximum occurs in fall. Analysis of the TRMM data reveals a structure whereby the boreal summer and winter monsoon rainfall regimes intertwine across the equator and both are strongly affected by the wind-terrain interaction. In particular the boreal winter regime extends far northward along the eastern flanks of the major island groups and landmasses.A hypothesis is presented to explain the asymmetric seasonal march in which the maximum convection follows a gradual southeastward progression path from the Asian 2 summer monsoon to the Asian winter monsoon but a sudden transition in the reverse. The hypothesis is based on the redistribution of mass between land and ocean areas during spring and fall that results from different land-ocean thermal memories. This mass redistribution between the two transition seasons produces sea-level patterns leading to asymmetric wind-terrain interactions throughout the region, and a low-level divergence asymmetry in the region that promote the southward march of maximum convection during boreal fall but opposes the northward march during boreal spring.3
[1] It is commonly believed that greenhouse-gas-induced global warming can weaken the east Asian winter monsoon but strengthen the summer monsoon, because of stronger warming over high-latitude land as compared to low-latitude oceans. In this study, we show that the surface wind speed associated with the east Asian monsoon has significantly weakened in both winter and summer in the recent three decades. From 1969 to 2000, the annual mean wind speed over China has decreased steadily by 28%, and the prevalence of windy days (daily mean wind speed > 5 m/s) has decreased by 58%. The temperature trends during this period have not been uniform. Significant winter warming in northern China may explain the decline of the winter monsoon, while the summer cooling in central south China and warming over the South China Sea and the western North Pacific Ocean may be responsible for weakening the summer monsoon. In addition, we found that the monsoon wind speed is also highly correlated with incoming solar radiation at the surface. The present results, when interpreted together with those of recent climate model simulations, suggest two mechanisms that govern the decline of the east Asian winter and summer monsoons, both of which may be related to human activity. The winter decline is associated with global-scale warming that may be attributed to increased greenhouse gas emission, while the summer decline is associated with local cooling over south-central China that may result from air pollution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.