Foram obtidas estimativas de parâmetros genéticos para peso ao nascimento (PN) e ao sobreano (PSOB), ganhos de peso pré- (GPNDES) e pós-desmama (GP345), dias para 160 (D160) e 300kg (D300) de peso vivo, e taxas de crescimento relativo pré- (TCR1) e pós-desmama (TCR2), utilizando 60.470 animais Nelore. Adotou-se o método REML, sob modelo animal. Para características pré-desmama (PN, GPNDES, D160 e TCR1), o modelo incluiu efeitos aleatórios de animal, aditivo materno, de ambiente permanente de vaca e de resíduo, e os efeitos fixos de grupo de contemporâneos (GC) à desmama e das covariáveis idade da vaca ao parto e idade do animal (IA) à época da desmama. Para características pós-desmama (PSOB, GP345, D300 e TCR2), considerou-se como efeito fixo o GC ao sobreano e como covariável a IA ao sobreano. As médias observadas± desvios-padrão foram 30,7±3,8kg (PN); 317,2± 49,4kg (PSOB); 155,4± 21,0kg (GPNDES); 119,6± 32,2kg (GP345); 175,7± 34,2 dias (D160); 553,9± 152,7 dias (D300); 913,2± 80,9x10-3%/dia (TCR1); e 140,5± 31,2x10-3%/dia (TCR2). Resultantes das análises conjuntas de duas características (GPNDES e cada uma das outras características), as estimativas de herdabilidade direta e materna para GPNDES variaram, respectivamente, de 0,11 a 0,20 e de 0,03 a 0,16. Os coeficientes de herdabilidade direta foram 0,24; 0,26; 0,18; 0,15; 0,12; 0,14 e 0,22, respectivamente, para PN, PSOB, GP345, D160, D300, TCR1 e TCR2. Os coeficientes de herdabilidade materna para PN, D160 e TCR1 foram, respectivamente, 0,11; 0,00 e 0,14. As correlações genéticas entre GPNDES e as outras características foram altas, exceto entre GPNDES e GP345 (0,23).
BackgroundGenotype imputation has been used to increase genomic information, allow more animals in genome-wide analyses, and reduce genotyping costs. In Brazilian beef cattle production, many animals are resulting from crossbreeding and such an event may alter linkage disequilibrium patterns. Thus, the challenge is to obtain accurately imputed genotypes in crossbred animals. The objective of this study was to evaluate the best fitting and most accurate imputation strategy on the MA genetic group (the progeny of a Charolais sire mated with crossbred Canchim X Zebu cows) and Canchim cattle. The data set contained 400 animals (born between 1999 and 2005) genotyped with the Illumina BovineHD panel. Imputation accuracy of genotypes from the Illumina-Bovine3K (3K), Illumina-BovineLD (6K), GeneSeek-Genomic-Profiler (GGP) BeefLD (GGP9K), GGP-IndicusLD (GGP20Ki), Illumina-BovineSNP50 (50K), GGP-IndicusHD (GGP75Ki), and GGP-BeefHD (GGP80K) to Illumina-BovineHD (HD) SNP panels were investigated. Seven scenarios for reference and target populations were tested; the animals were grouped according with birth year (S1), genetic groups (S2 and S3), genetic groups and birth year (S4 and S5), gender (S6), and gender and birth year (S7). Analyses were performed using FImpute and BEAGLE software and computation run-time was recorded. Genotype imputation accuracy was measured by concordance rate (CR) and allelic R square (R2).ResultsThe highest imputation accuracy scenario consisted of a reference population with males and females and a target population with young females. Among the SNP panels in the tested scenarios, from the 50K, GGP75Ki and GGP80K were the most adequate to impute to HD in Canchim cattle. FImpute reduced computation run-time to impute genotypes from 20 to 100 times when compared to BEAGLE.ConclusionThe genotyping panels possessing at least 50 thousands markers are suitable for genotype imputation to HD with acceptable accuracy. The FImpute algorithm demonstrated a higher efficiency of imputed markers, especially in lower density panels. These considerations may assist to increase genotypic information, reduce genotyping costs, and aid in genomic selection evaluations in crossbred animals.Electronic supplementary materialThe online version of this article (doi:10.1186/s12863-015-0251-7) contains supplementary material, which is available to authorized users.
RESUMOUtilizaram-se 14.563 pesagens de 1158 fêmeas da raça Nelore, nascidas entre 1984 e 1995, pertencentes a 10 fazendas, distribuídas em sete estados do Brasil. Com o objetivo de estabelecer um padrão médio de crescimento, obter parâmetros individuais das curvas e estimar os componentes de variância, herdabilidade e correlações genéticas dos parâmetros das curvas, foram comparados os modelos de Von Bertalanffy, Brody, logístico e Gompertz. Foram utilizados o procedimento NLIN e o programa MTDFREML sob modelo animal em análise unicaráter e bicaráter. Os parâmetros médios dos pesos assintóticos (A) e das taxas de maturidade (K) foram: 515,06 e 0,071 para Von Bertalanffy; 552,77 e 0,045 para Brody; 501,11 e 0,097 para logístico, e 507,00 e 0,083 para Gompertz, respectivamente. As estimativas de herdabilidade para A e K foram de alta magnitude: 0,39 e 0,42 para Von Bertalanffy, 0,42 e 0,44 para Brody, 0,40 e 0,41 para logístico e 0,39 e 0,39 para Gompertz, respectivamente. As correlações genéticas variaram entre -0,69 e -0,49. Todos os modelos foram adequados para descrever o crescimento. A ordem de escolha do melhor modelo para descrever a curva de crescimento foi: Brody, Von Bertalanffy, logístico e Gompertz. Essas características seriam passíveis de inclusão em índice de seleção para seleção de fêmeas Nelore.Palavras-chave: bovino, Nelore, curva de crescimento, peso assintótico, taxa de maturação Nellore beef cattle, born between 1984 and Bertalanffy; 552.77 and .045 for Brody; 501.11 and .097 for logistic; and 507.00 and .083 for Gompertz, respectively. High heritabilities were estimated for A and K parameters: .39 and .42 for Von Bertalanffy; .42 and .44 for Brody; .40 and .41 for logistic; and .39 and .39 ABSTRACT Data from 1158 females
With the objective of to adjust nonlinear models for the growth curves for a buffaloes herd raised in floodable lands in Rio Grande
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.