Interclass hybridization between soft and hard wheat (Triticum aestivum L.) results in new genetic combinations of potential value. We investigated whether interclass hybridization could improve end‐use quality of both classes. Our objectives were to analyze quality traits in a population of recombinant inbred lines (RILs) derived from a cross between the good quality soft white wheat NY6432‐18 (NY18), and good quality hard white wheat Clark's Cream (CC), identify quantitative trait loci (QTLs) for those traits, and use linkage analysis to determine which parent was contributing favorable alleles at specific QTLs for a given trait. The population was assessed for milling, protein and dough mixing, hydration, cookie and loaf traits. Traits were measured in two to six environments grown over three seasons in Ithaca, NY. The molecular map for the population contains 370 molecular markers including restiction fragment length polymorphisms (RFLPs), microsatellites, and markers derived from known function genes in wheat. Linkage groups have been located to all the wheat chromosomes except for 7D. Pinb derived from the puroindoline b gene on chromosome 5DS was the major QTL for milling, hydration, and cookie baking traits. The major QTL for mixograph peak time was at the Glu‐Dy1 marker, derived from Glu‐D1‐2 gene on chromosome 1DL. The Glu‐Ax1 and Glu‐By1 markers were QTLs for mixograph peak height and tolerance, respectively. QTLs for flour protein quantity were detected on chromosome 2B. With the exception of the hydration traits, multiple regression models included alleles from both parents. Interclass hybridization may be an underexploited wheat breeding strategy for improvement of agronomic and quality traits in wheat.
A simple procedure is described for the mechanical isolation of protoplasts of unfertilized and fertilized barley egg cells from dissected ovules. Viable protoplasts were isolated from ~75% of the dissected ovules. Unfertilized protoplasts did not divide, whereas almost all fertilized protoplasts developed into microcalli. These degenerated when grown in medium only. When cocultivated with barley microspores undergoing microspore embryogenesis, the protoplasts of the fertilized egg cells developed into embryo-like structures that gave rise to fully fertile plants. On average, 75% of cocultivated protoplasts of fertilized egg cells developed into embryo-like structures. Fully fertile plants were regenerated from ~50% of the embryo-like structures. The isolation-regeneration techniques may be largely genotype independent, because similar frequencies were obtained in two different barley varieties with very different performance in anther and microspore culture. Protoplasts of unfertilized and fertilized eggs of wheat were isolated by the same procedure, and a fully fertile wheat plant was regenerated by cocultivation with barley microspores.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.