Alzheimer’s dementia (AD) is a type of neurodegenerative disease that is associated with a decline in memory. However, speech and language impairments are also common in Alzheimer’s dementia patients. This work is an extension of our previous work, where we had used spontaneous speech for Alzheimer’s dementia recognition employing log-Mel spectrogram and Mel-frequency cepstral coefficients (MFCC) as inputs to deep neural networks (DNN). In this work, we explore the transcriptions of spontaneous speech for dementia recognition and compare the results with several baseline results. We explore two models for dementia recognition: 1) fastText and 2) convolutional neural network (CNN) with a single convolutional layer, to capture the n-gram-based linguistic information from the input sentence. The fastText model uses a bag of bigrams and trigrams along with the input text to capture the local word orderings. In the CNN-based model, we try to capture different n-grams (we use n = 2, 3, 4, 5) present in the text by adapting the kernel sizes to n. In both fastText and CNN architectures, the word embeddings are initialized using pretrained GloVe vectors. We use bagging of 21 models in each of these architectures to arrive at the final model using which the performance on the test data is assessed. The best accuracies achieved with CNN and fastText models on the text data are 79.16 and 83.33%, respectively. The best root mean square errors (RMSE) on the prediction of mini-mental state examination (MMSE) score are 4.38 and 4.28 for CNN and fastText, respectively. The results suggest that the n-gram-based features are worth pursuing, for the task of AD detection. fastText models have competitive results when compared to several baseline methods. Also, fastText models are shallow in nature and have the advantage of being faster in training and evaluation, by several orders of magnitude, compared to deep models.
Lung cancer becomes very common in our environment. Many computer-aided detection (CADe) schemes are available to detect lung nodules. So as to detect nodules in cost effective way, system uses chest radiographs (CXRs). Major challenge in those systems are the anatomical structures (ribs and clavicles) in the CXRs. These structures will conceal the nodules behind it. In order to overcome this problem virtual dual energy (VDE) technique has been implemented, which produces ribs and clavicle suppressed CXR image. After detecting the nodules, analysis of different types of nodules will assist the radiologist to improve the diagnosis accuracy, sensitivity and further treatment procedures. Currently the CADe scheme combine with VDE technique is having 85% sensitivity with 5 FPs/image.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.