Pull-in analysis of an electrostatically actuated nonuniform micro-resonator under large elastic deflection has been investigated with a focus on qualitative analysis to understand the essence of nonuniform cross-section on the determination of pull-in voltage. Here, a microcantilever beam with nonuniform cross-section has been adopted to develop a mathematical model considering the important features such as structural nonlinearities, nonlinear electrostatic distribution, and linear viscous effect. The individual effect of each design variables on the diagnosis of the critical voltage and corresponding critical deflection due to pull-in has been graphically depicted. The results in the static condition have been verified with the findings obtained via COMSOL multi-physics software. Present result indicates that a nonuniform microbeam configuration strengthens the structural stability by switching the pull-in voltage up to a higher value. Similarly, stable pull-in deflection within the restriction of pull-in instability has been also augmented. In addition, it has been shown that the nonuniformity within the beam structure is highly sensitive to the nonlinear effects. Hence, outputs provide a useful insight of pull-in behavior and enable an understanding of safe and smooth operating range of microelectromechanical system devices.
Abstract.A theoretical investigation of an electrically actuated beam has been illustrated when the electrostatic-ally actuated micro-cantilever beam is separated from the electrode by a moderately large gap for two distinct types of geometric configurations of MEMS accelerometer. Higher order nonlinear terms have been taken into account for studying the pull in voltage analysis. A nonlinear model of gas film squeezing damping, another source of nonlinearity in MEMS devices is included in obtaining the dynamic responses. Moreover, in the present work, the possible source of nonlinearities while formulating the mathematical model of a MEMS accelerometer and their influences on the dynamic responses have been investigated. The theoretical results obtained by using MATLAB has been verified with the results obtained in FE software and has been found in good agreement. Criterion towards stable micro size accelerometer for each configuration has been investigated. This investigation clearly provides an understanding of nonlinear static and dynamics characteristics of electrostatically micro cantilever based device in MEMS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.