We discuss a model for the on-site matrix elements of the sp 3 d 5 s * tight-binding hamiltonian of a strained diamond or zinc-blende crystal or nanostructure. This model features on-site, off-diagonal couplings between the s, p and d orbitals, and is able to reproduce the effects of arbitrary strains on the band energies and effective masses in the full Brillouin zone. It introduces only a few additional parameters and is free from any ambiguities that might arise from the definition of the macroscopic strains as a function of the atomic positions. We apply this model to silicon, germanium and their alloys as an illustration. In particular, we make a detailed comparison of tight-binding and ab initio data on strained Si, Ge and SiGe.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.